第 5 周:分部求和,绝对收敛(1 学时),级数加法和乘法,重排(1 学时),函数的极限(1 学时), 连续函数(1 学时)。
Week 5: Summation by parts, absolute convergence (1 hour), addition and multiplication of series, rearrangement (1
hour), limits of functions (1 hour), continuous functions (1 hour).
第 6 周:连续和紧(2 学时),连续和连通(1 学时),不连续(1 学时)。
Week 6: Continuity and compactness (2 hours), continuity and connectedness (1 hour), discontinuity (1 hour).
第 7 周:单调函数(1 学时),无穷极限和无穷远处的极限(1 学时),实函数的导数(2 学时)。
Week 7: Monotonic functions (1 hour), infinite limits and limit at infinity (1 hour), the derivative of a real function (2 hours).
第 8 周:中值定理(1 学时),导数的连续性,洛比达法则(1 学时),高阶导数,泰勒定理(1 学时),向量值函数的微分(1
学时)。
Week 8: Mean value theorems (1 hour), the continuity of derivatives, L’Hospital’s rule (1 hour), derivatives of higher
order, Taylor’s theorem (1 hour), differentiation of vector-valued functions (1 hour).
第 9 周:积分的定义和存在性(2 学时),积分的性质(2 学时)。
Week 9: Definition and existence of the integrals (2 hours), Properties of the integral (2 hours).
第 10 周:积分和微分,向量值函数的积分(1 学时),可求长曲线(1 学时),主要问题的讨论(1 学时), 一致收敛(1 学
时)。
Week 10: Integration and differentiation, integration of vector-valued functions (1 hour), rectifiable curves (1 hour),
discussion of main problem (1 hour), uniform convergence (1 hour).
第 11 周:一致收敛和连续(2 学时),一致收敛和积分(1 学时),一致收敛和微分(1 学时)。
Week 11: Uniform convergence and continuity (2 hours), uniform convergence and integration (1 hour), uniform
convergence and differentiation (1 hour).
第 12 周:等度连续的函数族(2 学时),线性变换(1 学时),微分(1 学时)。
Week 12: Equicontinuous families of functions (2 hours), linear transformations (1 hour), differentiation (1 hour).
第 13 周:微分,压缩原理(1 学时),反函数定理(1 学时),隐函数定理(2 学时)。
Week 13: Differentiation, the contraction principle (1 hour), the inverse function theorem differentiation (1 hour), the
implicit function theorem (2 hours).
第 14 周:秩定理(2 学时),多重积分(1 学时),原映射(1 学时)。
Week 14: The rank theorem (2 hours), multiple integrals (1 hour), primitive mappings (1 hour).
第 15 周:单位分解,换元 (1 学时),微分形式(3 学时)。
Week 15: Partition of unity, change of variables (1 hour), differential forms (3 hours).
第 16 周:单纯形和链(2 学时),Stokes 定理(1 学时),复习(1 学时)。
Week 16: Simplexes and chains (2 hours), Stokes’ theorem (1 hour), review (1 hour).