1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
大数据金融 Data analytics in finance
2.
授课院系
Originating Department
数学系
Department of Mathematics
3.
课程编号
Course Code
MA212-1
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
根据学生的情况可以是英文、中文或者两者相结合。
English, Chinese, or both
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
李景治博士,数学系
Dr. Jingzhi Li, Department of Mathematics
9.
/
方式
Tutor/TA(s), Contact
To be announced 待公布
10.
选课人数限额(不填)
Maximum Enrolment
Optional
50
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
大数据导论(MA333)
Introduction to big data
概率论与数理统计(MA212)
Probability and statistics
数理统计(MA204)
mathematical statistics
常微分方程 A(MA201a)
mathematical statistics
Ordinary differential equation
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
本课程是为金融数学专业学生开设的专业选修课。它研究用基于金融大数据以及
计算机的编程方法解决投资问题,是金融数学专业学生应该理解和掌握的专业基
础知识。
This course is an elective course for students majored in Financial Mathematics
in the following years. It is about the modern programming methods and big
data theory in solving quantitative investment problems by computers.
14.
其它要求修读本课程的学系
Cross-listing Dept.
计算机系 Department of Computer Science
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
介绍量化投资的基本概念,重要的投资模型策略,python 的实践方法;主要介绍量化投资平台的使用和提高,
技术分析模型,基本面分析模型,机器学习模型,和高频交易等。
To introduce the basic concepts and terminologies of quantitative investment, the important theories of
investment model, and the practical programming with python.
To mainly focus on the use of investment platforms, technical analysis models, fundamental analysis models,
machine learning models, and high frequency trading.
16.
预达学习成果 Learning Outcomes
通过本课程的教学使学生能了解现代量化投资中常用的基本概念及其实现,系统掌握量化投资的基本概念和分
析问题、解决问题的基本方法,为运用金融大数据分析的理论知识并为掌握更复杂的投资模型打好基础。
Students should understand the basic knowledge and terminology of quantitative investment and its
assorted implementation in Python or other programming languages. They should also have a solid grasp of
basic concepts in quantitative investment and its fundamental methods in analysing and solving the
problems. The course helps build the foundation for financial big data modelling and analysis as well as for
more complex modern investment methods.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
1 章:量化投资概念(3 学时):量化投资定义;量化投资与传统投资比较; 量化投资历史; 量化投资的主
要内容和主要方法。
Ch1. The concepts of quantitative investment (6h): The definition of quantitative investment; the
comparison between quantitative investment and traditional investment; the history of quantitative
investment; the main contents and methods for quantitative investment.
2 章:量化投资平台的初步使用(3 学时):使用 Ricequant 量化投资平台获取金融数据; python 基础。
Ch2. Basic use of quantitative investment platform (3h): Use Ricequant to get financial data and analyse
the data, rudimentals of python..
3 章:量化投资平台的进阶使用(3 学时):构建模型并回测,python 进阶,投资组合评价指标。
Ch3: The Advanced use of quantitative investment platform (3h): To build models and back-testing,
advanced python, portfolio evaluation.
4 章:短期策略(6 学时):技术指标趋势追踪模型,舆情数据等
Ch4: Short term strategy (6h): Technical indicators, trend tracking models, public opinion data
5 : 长期策略(6 学时):基本面分析;财务报表分析。
Ch5: Long term strategy (6h): Fundamental analysis; financial statement analysis
6 章:智能策略(6 学时):机器学习的概念,机器学习在量化投资中的运用。
Ch6: Intelligent strategy (6h): The concepts of machine learning, the use of machine learning in
quantitative investment.
7 章:高频交易(6 学时):高频交易的特点,做市商,程序化交易。
Ch7: high frequency trading (6h): The characteristics of high frequency trading, market maker,
programming trading.
8 章:业界实战经验分享(12 学时):真实市场如何赚钱。
Ch8: experience sharing(12h): How to earn money in real world.
9 章:量化投资策略模拟交易9 学时):回测打分;交易竞赛;模拟盘实战;project 展示。
Ch9: Quantitative investment strategy for simulated trading (9h): Back-test evaluation; trading
competition; simulation of actual market; project presentation.
18.
教材及其它参考资料 Textbook and Supplementary Readings
基本教材 Required Textbook
1.丁鹏,量化投资-策略与技术,电子工业出版社 2012
2. Active Portfolio ManagementA Quantitative Approach, Richard C.Grinold
3. Algorithmic and High-Frequency Trading (Mathematics, Finance and Risk), Álvaro Cartea
参考教材:
1.周英大数据挖掘-系统方法与实例分析,机械工业出版社,2016
4
2. 卓金武,量化投资-数据挖掘技术与实践,电子工业出版社,2015
3. Python for Finance, Yves Hilpisch
4. High Frequency Trading – A Practical Guide to Algorithmic Strategies and Trading Systems, Irene
Aldridge, Wiley 2010
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
10%
课堂表现
Class
Performance
小测验
Quiz
20%
课程项目 Projects
30%
平时作业
Assignments
10%
期中考试
Mid-Term Test
15%
期末考试
Final Exam
15%
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority
数学系课程规划与审核委员会
Curriculum Planning and Review Committee, Department of Mathematics