1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际课需要或在课程检讨之后产生变动。如对课程有任何疑问,
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
高等数学(下)(Calculus II
2.
授课院系
Originating Department
数学系(Department of Mathematics
3.
课程编号
Course Code
MA127
4.
课程学分 Credit Value
4
5.
课程类别
Course Type
通识必修课程 General Education (GE) required Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
英文 English / 中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
王融等 (Rong Wang, et al.)
数学系 Department of Mathematics
wangr3@sustech.edu.cn
9.
验员/、所、联
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(可不)
Maximum Enrolment
Optional
2
11.
授课方式
Delivery Method
讲授
Lectures
实验/
Lab/Practical
其它(具体注明)
OtherPleasespecify
总学时
Total
学时数
Credit Hours
64
0
0
96
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
高等数学(上)(Calculus I
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
实变函数,复变函数,常微分方程
Real AnalysisComplex AnalysisOrdinary Differential Equations
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程的对象是将来选择物理、电子工程等对数学要求较高的专业的学生。本课程强调多变量微积分
基本概念、性质以及计算微分和积分的基本技巧,培养学生们使用微积分的思想去解决其它科学领域
能力。本课程主要包括:数列和函数的级数、向量函数的微分、偏微分、向量场的概念,以及在欧氏空
间上或者在曲线和曲面上的多重积分
In this course, we emphasize intuitive and conceptual understanding of the theory of multivariable
Calculus, computation skills, and nurture the mentality and the ability to use Calculus to solve problems
in other scientific disciplines. The course will cover series, calculus of vector functions, partial
derivatives, multiple integrals on regions in Euclidean space, line integrals and surface integrals.
16.
预达学习成果 Learning Outcomes
通过本课程的学习,使学生掌握多变量微积分的基本概念、基本理论和基本运算技能,为学生进一步学
习以后的各门专业基础课奠定必要的数学基础。
By learning Calculus II, students will understand the basic concepts and theorems, and obtain the
basic calculation skill. It will lay the necessary mathematical foundation for further study of every
fundamental course and major course in future.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
无穷级数(12 小时)
空间解析几何13 小时)
偏导数(10 小时)
多重积分(10 小时)
曲线和曲面积分(13 小时)
Infinite Series (12 hours)
Analytic Geometry of Space (13 hours)
Partial Derivatives (10 hours)
Multiple Integrals (10 hours)
Integration in Vector Fields (13 hours)
18.
教材及其它参考资料 Textbook and Supplementary Readings
材:ThomasCalculus, 13e, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson
Education, 2016.
TextbookThomas’Calculus, 13e, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson
Education, 2016.
课程评 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5
课堂表现
Class
Performance
0
小测验
Quiz
10
课程项目 Projects
0
平时作业
Assignments
15
期中考试
Mid-Term Test
30
期末考试
Final Exam
40
期末报告
0
4
Final
Presentation
其它(可根据需要
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
0
20.
记分方 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority