2
其它(请具体注明)
Other(Pleasespecify)
复习、考试(1 周) 4
Revision & Exam (1
week) 4-hours
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
后续课程、其它学习规划
Courses for which this
course is a pre-requisite
后续课程为线性代数精讲,是金融数学系的数值分析、常微分方程、偏微分方
程、回归分析、金融数学及金融工程等课程的先修课程,同时也是其他工程学科
多门专业课的先修课程。
Linear Algebra is a prerequisite for Advanced Linear Algebra. It’s also a
prerequisite for many mathematics courses including Numerical analysis,
Ordinary differential equations, Partial differential equations, Regression
analysis, Financial Mathematics and Financial Engineering and etc.
其它要求修读本课程的学系
Cross-listing Dept.
本课程的教学目的是培养学生严谨的逻辑推理和抽象思维能力。课程主要讲述线性代数基本的概念和理论,
包括线性方程组、矩阵代数、行列式、向量空间、线性变换、正交性理论、特征值和特征向量、奇异值分解
以及二次型等相关理论,为进一步学习线性代数精讲的内容打下坚实的基础。课程的重点包括矩阵运算、求
解线性方程组、向量空间、线性变换的相关理论求解特征值和特征向量以及二次型。
To introduce the basic concepts in linear algebra including systems of linear equations, matrix algebra,
determinants, vector spaces, linear transformations, eigenvalues and eigenvectors, singular value
decomposition and quadratic forms. It is a prerequisite for Advanced Linear Algebra. The emphasis is on
operations with matrices, solving systems of linear equations, fundamental theory of vector spaces and
linear transformations, solving eigenvalues and eigenvectors problems, and quadratic forms.
通过对本课程的学习,学生可以理解和掌握线性代数的基本理论和技巧,能够熟练掌握行列式的基本理论和求
解方法;熟练掌握矩阵的基本运算和矩阵的逆;熟练掌握求解线性方程组的方法;熟练掌握矩阵特征值和特
征向量的计算;熟练掌握斯密特(Schmidt)正交化方法;理解向量线性相关性的理论、n 维实空间的基和正交
基、相似矩阵及矩阵可对角化、二次型的基本理论以及线性变换。
After completing this course, students should understand the basic methods and techniques in Linear
Algebra. They should be able to compute determinants, manipulate matrices and do matrix algebra, solve
systems of linear equations, compute eigenvalues and eigenvectors. After learning this course, students
should be able to understand the basic concepts of linear independence and linear dependence, the basis
and orthonormal basis of n-dimensional vector space, similar matrices and diagonalizable matrices,
quadratic forms and linear transformations.