1
课程详述
COURSE SPECIFICATION
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
高等代数 II Advanced Linear Algebra II
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
4.
课程学分 Credit Value
4
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
胡勇,数学系
慧园 3 409
huy@sustech.edu.cn
0755-8801-5910
Yong Hu, Department of Mathematics
Block 3, Room 409, Wisdom Valley
huy@sustech.edu.cn
0755-8801-5910
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
96
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
高等代数 I / Advanced Linear Algebra I
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
初等数论、抽象代数
Elementary Number Theory, Abstract Algebra
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程主要为数学系数学与应用数学专业设计,分成 III 两部分,按两个学期连贯教学。课程旨在引导学生深入系统地学
习该专业所需要的代数学基本知识,为数学专业高年级的后续课程打下扎实的基础。课程内容将按照高于同类课程的标准
进行教学和考核,以培养出代数学基础最扎实的学生为目标。
本课程(高等代数 II )内容主要包括:双线性型和内积空间,多项式分解及其应用,线性算子的谱理论,Jordan 标准形,欧
氏空间的旋转变换群,以及若干选讲专题。
This course is primarily designed for students majored in pure and applied mathematics, and is divided into Parts I and II,
lasting ideally for two consecutive semesters. It aims at leading students into systematic and thorough studies of the
fundamentals of modern algebra, thus getting them to lay a solid foundation for subsequent, more advanced courses in
math major. The contents of the course and the standards of assessment will normally surpass the other courses in the
same series, the objective being to foster students with best background in algebra.
Main topics of this course (Advanced Linear Algebra II) includeBilinear forms and inner product spaces, polynomial
factorization and applications, spectral theory of linear operators, Jordan canonical forms, rotation group of Euclidean
spaces, and some selected topics.
16.
预达学习成果 Learning Outcomes
通过对本课程的学习,学生能够理解和掌握高等代数的更深入理论(包括内积空间、若当标准形、正规算子、谱定理)
在一些重要应用。同时,学生应当逐渐培养出较好的抽象思维能力和进行严密数学推理和证明的能力。
An adequate training through this course should help the students to understand the basics of advanced linear algebra
(such as inner product spaces, Jordan canonical forms, normal operators, spectral theorems) as well as some important
applications. Also, students are expected to gradually foster the ability of abstract thinking and doing logically rigorous
arguments and proofs in math.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第零章 前情回 (2h)
§1 向量空间与线性映射
§2 基变换与矩阵变形
§3 不变子空间和特征子空间
第一章 双线性型与内积空间 (14h)
§1 双线性型与 Hermite
1.1 双线性型及其矩阵表示
1.2 对称双线型与二次型
1.3 Hermite 型与 Hermite 矩阵
§2 对偶空间和伴随变换
2.1 线性泛函和对偶空间
2.2 正交关系和对偶基
§3 实与复内积空间
3.1 内积和范数
3.2 规范正交基
3.3 正交补和正交投影
第二章 多项式分解及其应用 (8h)
§1 多项式形式与多项式函数
1.1 数域上的一元多项式环
1.2 多项式除法
1.3 多项式的零点及其重数
§2 实系数和复系数多项式
2.1 复多项式的因式分解
2.2 实多项式的因式分解
§3 矩阵值多项式
3.1 多项式代入矩阵取值
4
3.2 线性算子代入多项式取值
3.3 化零多项式和极小多项式
3.4 线性算子的上三角化
第三章 线性算子谱理论 (14h)
§1 内积空间上的算子
1.1 自伴算子及其矩阵
1.2 正规算子及其矩阵
§2 谱定理
2.1 酉空间上的正规算子
2.2 Euclid 空间上的自伴算子
2.3 矩阵的正交相似和酉相似
§3 正定算子和等距变换
3.1 正定算子及其矩阵
3.2 等距变换及其矩阵
3.3 极分解和方阵奇异值
第四章 Jordan 标准形 (16 学时)
§1 广义特征子空间和准对角形
1.1 定义和基本性质
1.2 复算子的广义特征子空间分解
1.3 特征多项式与 Cayley-Hamilton 定理
1.4 复算子的准对角形
§2 幂零算子
2.1 幂零算子和幂零矩阵
2.2 复算子和复矩阵的 Jordan 分解
2.3 循环子空间分解
§3 复算子的 Jordan 标准形
5
3.1 Jordan 块与 Jordan 标准形
3.2 存在和唯一性
3.3 实用算法和计算举例
第五章 欧氏空间的旋转变换 (6 学时)
§1 欧氏空间的正规算子
1.1 实正规算子的标准形
1.2 欧氏空间的等距变换
§2 低维空间中的旋转
第六章 专题选 (4 学时)
§1 商空间与正合列
§2 多重线性代数
§3 矩阵分析
§4 矩阵群和李代数
Chapter 0 Some Reviews (2h)
§1 Vector spaces and linear maps
§2 Change of basis and transformations of matrices
§3 Invariant subspaces and eigenspaces
Chapter 1 Bilinear Forms and Inner Product Spaces (14h)
§1 Bilinear and hermitian forms
1.1 Bilinear forms and their matrices
1.2 Symmetric bilinear forms and quadratic forms
1.3 Hermitian forms and hermitian matrices
§2 Dual spaces and adjoint maps
2.1 Linear functionals and dual space
2.2 Orthogonal relations and dual bases
6
§3 Real and complex inner product spaces
3.1 Inner products and norms
3.2 Orthonormal bases
3.3 Orthogonal complements and projections
Chapter 2 Polynomial Factorizations and Applications (8h)
§1 Formal polynomials and polynomial functions
1.1 One-variable polynomial ring over number fields
1.2 Division algorithm for polynomials
1.3 Zeros of polynomials and their multiplicities
§2 Polynomials with real and complex coefficients
2.1 Factorization of real polynomials
2.2 Factorization of complex polynomials
§3 Polynomials taking matrix values
3.1 Substitution of matrices into polynomials
3.2 Substitution of operators into polynomials
3.3 Annihilating polynomial and minimal polynomial
3.4 Triangularization of linear operators
Chapter 3 Spectral Theory of Linear Operators (8h)
§1 Operators on inner product spaces
1.1 Self-adjoint operators and their matrices
1.2 Normal operators and their matrices
§2 Spectral theorems
2.1 Normal operators on unitary spaces
2.2 Self-adjoint operators on Euclidean spaces