2
其它(请具体注明)
Other(Please specify)
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
线性代数为数值分析、常微分方程、偏微分方程、回归分析、金融数学及金融工程等课
程的先修课程,同时也是其他工程学科多门专业课的先修课程。
Linear Algebra is a prerequisite for many mathematics curriculums including Numerical
analysis, Ordinary differential equations, Partial differential equations, Regression
analysis, Financial Mathematics and Financial Engineering and etc.
其它要求修读本课程的学系
Cross-listing Dept.
本课程的教学目的是在培养与其专业需求相关的应用和计算能力。讲述线性代数基本的概念和理论,包括行列式、矩阵、
向量和向量空间、线性方程组、矩阵的特征值和特征向量以及二次型。建议在习题课上向学生讲授如何使用 MATLAB 等
软件进行矩阵的运算和求解线性方程组。本课程的重点包括行列式的计算、矩阵运算、求解线性方程组以及求解特征值和
特征向量。
To introduce the basic concepts in linear algebra including determinants, matrices, vector spaces and systems of linear
equations, eigenvalues and eigenvectors of matrices, and quadratic forms. In tutorials, let students use MATLAB
performing matrices computation and solving systems of linear equations. The emphasis is on computation of
determinants, operations with matrices, solving systems of linear equations, and solving eigenvalues and eigenvectors
problems.
通过对本课程的学习,学生可以理解和掌握线性代数的基本理论和技巧,能够熟练掌握行列式的基本理论和求解方法;熟
练掌握矩阵的基本运算和矩阵的逆;熟练掌握求解线性方程组的方法;熟练掌握矩阵特征值和特征向量的计算;熟练掌握
斯密特(Schmidt)正交化方法;熟练掌握化二次形为标准形的方法;理解向量线性相关性的理论、n 维实空间的基和正交
基、相似矩阵及矩阵可对角化、以及二次型的基本理论。
After completing this course, students should understand a few basic methods and techniques in Linear algebra. They
should be able to manipulate and compute determinants, manipulate matrices and do matrix algebra, solve systems of
linear equations, compute eigenvalues and eigenvectors and find the canonical form of a quadratic form. After learning
this course, students should also need to understand linear independence and linear dependence, the basis and
orthonormal basis of n-dimensional vector space, similar matrices and diagonalizable matrices and quadratic forms.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)