2
选课人数限额(可不填)
Maximum Enrolment
(Optional)
其它(请具体注明)
Other(Please specify)
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
后续课程、其它学习规划
Courses for which this
course is a pre-requisite
后续课程为线性代数精讲、数值分析、常微分方程、偏微分方程等课程的先修课程,同时
也是其他工程学科多门专业课的先修课程。
Linear Algebra is a prerequisite for Advanced Linear Algebra. It’s also a prerequisite for
many mathematics curriculums including Numerical analysis, Ordinary differential
equations, Partial differential equations and etc.
其它要求修读本课程的学系
Cross-listing Dept.
本课程的教学目的是培养严谨的逻辑推理和抽象思维能力。讲述线性代数基本的概念和理论,包括线性方程组、矩阵代
数、行列式、向量空间、线性变换、正交性理论、特征值和特征向量、奇异值分解以及二次型等相关理论,为进一步学习
线性代数 II 的内容打下坚实的基础。本课程的重点包括矩阵运算、求解线性方程组、向量空间、线性变换的相关理论求解
特征值和特征向量以及二次型。
To introduce the basic concepts in linear algebra including systems of linear equations, matrix algebra, determinants,
vector spaces, linear transformations, eigenvalues and eigenvectors, singular value decomposition and quadratic forms.
It is a prerequisite for Linear Algebra II. The emphasis is on operations with matrices, solving systems of linear
equations, fundamental theory of vector spaces and linear transformations, solving eigenvalues and eigenvectors
problems, and quadratic forms.
通过对本课程的学习,学生可以理解和掌握线性代数的基本理论和技巧,能够熟练掌握行列式的基本理论和求解方法;熟
练掌握矩阵的基本运算和矩阵的逆;熟练掌握求解线性方程组的方法;熟练掌握矩阵特征值和特征向量的计算;熟练掌握
斯密特(Schmidt)正交化方法;理解向量线性相关性的理论、n 维实空间的基和正交基、相似矩阵及矩阵可对角化、二次型
的基本理论以及线性变换。
After completing this course, students should understand the basic methods and techniques in Linear Algebra. They
should be able to compute determinants, manipulate matrices and do matrix algebra, solve systems of linear equations,
compute eigenvalues and eigenvectors. After learning this course, students should be able to understand the basic
concepts of linear independence and linear dependence, the basis and orthonormal basis of n-dimensional vector
space, similar matrices and diagonalizable matrices, quadratic forms and linear transformations.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)