1
课程详述
COURSE SPECIFICATION
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
高等代数 I Advanced Linear Algebra I
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
4.
课程学分 Credit Value
4
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
胡勇,数学系
慧园 3 409
huy@sustech.edu.cn
0755-8801-5910
Yong Hu, Department of Mathematics
Block 3, Room 409, Wisdom Valley
huy@sustech.edu.cn
0755-8801-5910
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
96
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
None
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
高等代数 II ( II-H) 线性代数精讲
Advanced Linear Algebra II (or II-H) or Advanced Linear Algebra
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程主要为数学系数学与应用数学专业设计,分成 III 两部分,按两个学期连贯教学。课程旨在引导学生深入系统地学
习该专业所需要的代数学基本知识,为数学专业高年级的后续课程打下扎实的基础。课程内容将按照高于同类课程的标准
进行教学和考核,以培养出代数学基础最扎实的学生为目标。
本课程(高等代数 I )内容主要包括:矩阵和线性方程组,向量空间及其子空间,线性映射及其矩阵,行列式及其应用,二次
型及其几何应用。
This course is primarily designed for students majored in pure and applied mathematics, and is divided into Parts I and II,
lasting ideally for two consecutive semesters. It aims at leading students into systematic and thorough studies of the
fundamentals of modern algebra, thus getting them to lay a solid foundation for subsequent, more advanced courses in
math major. The contents of the course and the standards of assessment will normally surpass the other courses in the
same series, the objective being to foster students with best background in algebra.
Main topics of this course (Advanced Linear Algebra I) includeMatrices and systems of linear equations, vector spaces
and their subspaces, linear maps and their matrices, determinants and applications, quadratic forms with geometric
applications.
16.
预达学习成果 Learning Outcomes
通过对本课程的学习,学生能够理解和掌握高等代数的基本理论(括矩阵、线性空间和线性算子)和在坐标几何中的重
要应用。同时,学生应当逐渐培养出较好的抽象思维能力和进行严密数学推理和证明的能力。
An adequate training through this course should help the students to understand the basics of advanced linear algebra
(such as matrices, linear spaces and linear operators) as well as some important applications in coordinate geometry.
Also, students are expected to gradually foster the ability of abstract thinking and doing logically rigorous arguments and
proofs in math.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第零章 线性代数为哪般 (1h)
§1 线性代数学什么
§2 线性代数怎么学
第一章 矩阵和线性方程组 (11h)
§1 解线性方程组
1.1 方程组的初等变换
1.2 系数矩阵和高斯消元法
1.3 用行阶梯形确定解集性态
§2 矩阵算术
2.1 矩阵基本运算
2.2 初等矩阵和矩阵等价
2.3 秩和逆矩阵
2.4 分块矩阵
第二章 向量空间及子空间 (14h)
§1 再论线性方程组
1.1 几何直观
1.2 齐次方程组的解空间
1.3 线性相关与无关
§2 R^n 中的子空间
2.1 例子多多益善
2.2 向量组和线性组合
2.3 基和维数
2.4 子空间的交与和
§3 抽象向量空间
3.1 多项式与函数空间
3.2 抽象向量空间
4
3.3 有限维向量空间
第三章 线性映射及矩阵表示 (16h)
§1 线性映射
1.1 平面和空间中的线性变换
1.2 矩阵视为线性映射
1.3 一般的线性映射
1.4 核与像
§2 线性映射的运算
2.1 线性映射的矩阵表示
2.2 线性映射四则运算
2.3 线性泛函
§3 基变换与矩阵相似
3.1 矩阵变换与基变换
3.2 特征值和特征向量
3.3 几何解释
3.4 矩阵对角化
第四章 行列式及其应用 (10 学时)
§1 低阶行列式
1.1 二阶行列式与平面几何
1.2 向量的数量积、向量积与混合积
1.3 三阶行列式与空间几何
§2 高阶行列式
2.1 行列式的多线性
2.2 行列式函数的构造
2.3 一些常用性质
2.4 计算举例
5
§3 行列式的应用
3.1 Cramer 法则
3.2 矩阵的秩和逆
3.3 检验特征值
第五章 二次型及几何应用 (12 )
§1 基本概念
1.1 二次型及其矩阵表示
1.2 二次型等价与矩阵相合
1.3 正交基
§2 正交化与标准形
2.1 Gram-Schmidt 正交化
2.2 配方法
2.3 对称矩阵的相合标准形
§3 惯性指数与正定性
3.1 实系数和复系数二次型的规范形
3.2 二次型和对称矩阵的正定性
§4 二次超曲面的分类
4.1 仿射分类
4.2 正交分类
Chapter 0 Why Linear Algebra (1h)
§1 What to study
§2 How to learn
Chapter 1 Matrices and Linear Systems (11h)
§1 Solving systems of linear equations
1.1 Elementary transformations of equations
6
1.2 Coefficient matrix and Gaussian elimination
1.3 Determining solution sets using row echelon forms
§2 Matrix arithmetic
2.1 Basic operations on matrices
2.2 Elementary matrices and matrix equivalence
2.3 Rank and inverses of matrices
2.4 Partitioned matrices
Chapter 2 Vector Spaces and Subspaces (14h)
§1 Revisiting linear systems
1.1 Some geometric intuition
1.2 Solution spaces of homogeneous systems
1.3 Linear dependence and independence
§2 Subspaces of R^n