1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
线性代数 I-A Linear Algebra I-A
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA103A
4.
课程学分 Credit Value
4
5.
课程类别
Course Type
通识必修课程 General Education (GE)Required Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
英文 English / 中文 Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
李才恒,教授,数学系
慧园 3 528
邮箱: lich@sustc.edu.cn
电话: 0755-88018755
Caiheng Li, Professor, Department of Mathematics
Room 528, Block 3, Wisdom Garden.
email: lich@sustc.edu.cn
phone: 0755-88018755
陈懿茂
数学系
慧园 3 508
huy@sustech.edu.cn
Chen Yi mao
Department of Mathematics
Block 3, Room508, Wisdom Valley
Chenym@sustech.edu.cn
9.
/
方式
Tutor/TA(s), Contact
2
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
N/A
96
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
/None
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
后续线性代 II、是系的、常偏微回归
析、金融数学及金融工程等课程的先修课程,同时也是其他工程学科多门专业课的先修课
程。
Linear Algebra is a prerequisite for Linear Algebra II. It’s also a prerequisite for many
mathematics curriculums including Numerical analysis, Ordinary differential equations,
Partial differential equations, Regression analysis, Financial Mathematics and Financial
Engineering and etc.
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
此课的对象是数学及物理等对数学要求较高的学生。本课程的教学目的是培养严谨的逻辑推理和抽象思维能力。讲述线性
代数基本的概念和理论,包括线性方程组、矩阵代数、行列式、向量空间、线性变换、正交性理论、特征值和特征向量、
奇异值分解以及二次型等相关理论,为进一步学习线性代数 II 的内容打下坚实的基础。本课程的重点包括矩阵运算、求解
线性方程组、向量空间、线性变换的相关理论求解特征值和特征向量以及二次型。
To introduce the basic concepts in linear algebra including systems of linear equations, matrix algebra, determinants,
vector spaces, linear transformations, eigenvalues and eigenvectors, singular value decomposition and quadratic forms.
It is a prerequisite for Linear Algebra II. The emphasis is on operations with matrices, solving systems of linear equations,
fundamental theory of vector spaces and linear transformations, solving eigenvalues and eigenvectors problems, and
quadratic forms.
16.
预达学习成果 Learning Outcomes
通过本课的学,学可以解和握线代数基本论和,熟练握行式的理论求解法;
练掌握矩阵的基本运算和矩阵的逆;熟练掌握求解线性方程组的方法;熟练掌握矩阵特征值和特征向量的计算;熟练掌握
斯密特(Schmidt)正交化方法;理解向量线性相关性的理论、n 维实空间的基和正交基、相似矩阵及矩阵可对角化、二次型
的基理论线性换。本课的学学生能了何使 MATLAB 等科计算进行的矩计算
解线性方程组。
After completing this course, students should understand the basic methods and techniques in Linear Algebra. They
should be able to compute determinants, manipulate matrices and do matrix algebra, solve systems of linear equations,
compute eigenvalues and eigenvectors. After learning this course, students should be able to understand the basic
concepts of linear independence and linear dependence, the basis and orthonormal basis of n-dimensional vector space,
similar matrices and diagonalizable matrices, quadratic forms and linear transformations.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
Week 1:
1.1 Introduction
1.2 The geometry of Linear Equations
1.3 An example of Gaussian Elimination
1.4 Matrix Notation and Matrix Multiplication
第一周:
1.1 简介
1.2 线性方程的几何表示
1.3 高斯消元的一个例子
1.4 矩阵符号和矩阵乘法
Week 2:
1.4 Matrix Notation and Matrix Multiplication
1.5 Triangular Factors and Row Exchanges
1.6 Inverses and Transposes
第二周:
1.5 矩阵符号和矩阵乘法
1.6 三角分解因子和行交换
1.7 逆和转置
Week 3:
1.6 Inverses and Transposes
2.1 Vector spaces and subspaces
第三周:
1.6 逆和转置
2.1 向量空间和子空间
Week 4
2.2 Solving Ax=0 and Ax=b
4
第四周:
2.2 求解 Ax=0 Ax=b
Week 5:
2.3. Linear Independence, Basis, and Dimension
2.4 The Four Fundamental Subspaces
第五周:
2.3 线性无关性,基和维数
2.4 四个基本子空间
Week 6:
2.6 Linear Transformations
第六周:
2.6 线性变换
Week 7:
3.1 Orthogonal Vectors and Subspaces
3.2 Cosines and Projections onto Lines
3.3 Projections and Least Squares
第七周:
3.1 正交向量和子空间
3.2 余弦和到直线上的投影
3.2 投影和最小二乘
Week 8:
3.3 Projections and Least Squares--cont’d
3.4 Orthogonal Bases and Gram Schmidt
第八周:
3.3 投影和最小二乘
3.4 正交基和 Schmidt 正交化
5
Week 9:
4.1 Introduction
4.2 Properties of The Determinant
4.3 Formulas for the Determinant
第九周:
4.1 简介
4.2 行列式的性质
4.3 行列式的公式
Week 10:
4.3 Formulas for the Determinant--cont’d
4.4 Applications of Determinants
第十周:
4.3 行列式的公式
4.4 行列式的应用
Week 11:
5.1 Introduction
5.2 Diagonalization of a Matrix
第十一周:
5.1 简介
5.2 矩阵的对角化
Week 12:
5.5 Complex Matrices
5.6 Similarity Transformations
第十二周:
5.5 复数矩阵
5.6 相似变换
6
Week 13:
5.6 Similarity Transformations--cont’d
6.1 Minima, Maxima, and Saddle Points
第十三周:
5.6 相似变换
6.1 极小值,极大值,和鞍点
Week 14:
6.2 Test for Positive Definiteness (Quadratic Forms)
第十四周:
6.2 正定性的判定(二次型)
Week 15:
6.3 Singular Value Decomposition
第十五周:
6.3 奇异值分解
Week 16:
6.4 Minimum Principles
Review
第十六周:
6.4 最小值原理
学期复习
18.
教材及其它参考资料 Textbook and Supplementary Readings
教材(Textbook: Linear Algebra and Its Applications, 4
th
Edition, Gilbert Strang.
推荐参考书(Supplementary Readings:
1. Linear Algebra with Applications, 8
th
Edition, Steven J. Leon, 2011.
2. Linear Algebra, 4
th
Edition, Stephan H. Friedberg, Arnold J. Insel, and Lawrence E. Spence, Prentice Hall, 2002.
3. 高等代数,北京大学数学系前代数小组编,第 4 版,高等教育出版社,2013.
4. 线性代数,李炯生等编著,中国科技大学出版社,2010.
课程评估 ASSESSMENT
7
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5%
课堂表现
Class
Performance
小测验
Quiz
15%
课程项目 Projects
平时作业
Assignments
10%
期中考试
Mid-Term Test
30%
期末考试
Final Exam
40%
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority