1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
数学分析 I Mathematical Analysis I
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA101a
4.
课程学分 Credit Value
5
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
马富明,吴纪桃
Fuming Ma Jitao Wu
数学系
慧园 3 409
huy@sustech.edu.cn
0755-8801-5910
Yong Hu, Department of Mathematics
Block 3, Room 409, Wisdom Valley
huy@sustech.edu.cn
0755-8801-5910
9.
/
方式
Tutor/TA(s), Contact
10.
选课人数限额(不填)
Maximum Enrolment
Optional
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
0
96
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
NA
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程为主修数学的学生奠定坚实的分析理论基础,培养严谨的逻辑推理和数学思维能力。用 epsilon-delta 语言定义微
积分里的基本概念,内容涵盖基本的实数理论、极限、函数的连续性、函数的导数和不定积分等。
This course aims at providing math majored students with solid foundation in the theory of analysis, cultivating their ability
of rigorous logical reasoning and mathematical thinking. It uses epsilon-delta language to define basic concepts in
Calculus and covers elementary theory of real numbers, limits, continuity of functions, derivatives and indefinite integrals.
16.
预达学习成果 Learning Outcomes
学生需要通过 epsilon-delta 语言理解极限、连续等基本概念,并能运用 epsilon-delta 语言证明简单的命题,熟练掌握
微积分的运算技巧。
Students are expected to understand the basic concepts, such as limit and continuity, through epsilon-delta language,
and use epsilon-delta language to prove simple propositions. They are also supposed to master calculation skills in
Calculus.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
1.数列的极限 (12 学时)
Limit of sequences.12 hours
2.函数的极限与连续性(12 学时)
Limit and continuity of functions12 hours
3.函数的导数与微分(12 学时)
Derivative of functions and differential12 hours
4.微分中值定理与 Taylor 定理(12 学时)
Differential mean value theorem and Taylor’s theorem 12 hours
5.求导的逆运算---原函数(8 学时)
The inverse of derivation----Primitive function 8 hours
6.积分 I----函数的积分与计算(8 学时)
Integral I----Integral of functions and its computation8 hours
18.
教材及其它参考资料 Textbook and Supplementary Readings
教材 Textbook
数学分析教程(上下册),常庚哲 , 史济怀, 中国科学技术大学出版社,第三版,2012.
其他参考资料 Supplementary Readings
Mathematical Analysis (I,II), Zorich, 世界图书, 1 , 2010.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5
课堂表现
Class
Performance
0
小测验
Quiz
15
课程项目 Projects
0
平时作业
Assignments
10
期中考试
Mid-Term Test
30
期末考试
Final Exam
40
期末报告
0
4
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority