第一部分:简要介绍金融衍生品(4 学时)
Part I. Introduction to Financial Derivatives(4 Credit Hours)
第二部分:离散时间模型(9 学时)
单时段模型,包括模型描述,介绍期货期权等,投资组合和无套利理论,以及未定权益和风险中性定价理论。
多时段模型,包括 Cox-Ross-Rubinstein 模型,条件期望和离散时间鞅理论,欧式期权和美式期权。
Part II. Discrete-time model(9 Credit Hours)
The one period model, including model description, introduction to futures and options,portfolios and arbitrage,
contingent claims and risk neutral valuation.
The multiperiod (Cox-Ross-Rubinstein) model, conditional expectation and discrete-time martingale, European option
and American option.
第三部分:随机分析简介(12 学时)
一维布朗运动及其他相关随机过程,鞅理论,随机分析和伊藤公式。
Part III. Stochastic Integral (12 Credit Hours)
One-dimensional Brownian Motion and related process, martingales, stochastic calculus and the Ito’s formula.
第四部分:期权定价一般理论初步(11 学时)
自融资投资组合, Black-Scholes-Merton 定价模型,风险中性定价,波动率等.
Part IV. Options pricing(11 Credit Hours)
Self-financing portfolios, the Black-Scholes-Merton pricing model, risk neutral valuation, volatility, etc.
第五部分:奇异期权简介(7 学时)
介绍障碍期权、亚式期权、回望期权、互换期权等.
Part V. Exotic options(7 Credit Hours)
Introduction to barrier options, Asian options, lookback options, and exchange options, etc.
第六部分:隐含波动率(5 学时)
介绍隐含波动率、对冲等.
Part VI. Implied volatility(5 Credit Hours)
Introduction to implied volatility, hedging, etc.
参考教材 Textbook:
Options, Futures, and Other Derivatives (9th Edition), John.C.Hull, 2014, ISBN-10: 0-13-345631-5, ISBN-13: 978-0-13-
345631-8.
期权、期货及其他衍生产品(原书第 9 版),约翰·赫尔(John C.Hull) 著;王勇,索吾林 译 , 机械工业出版社,
2014.
A course in Financial Calculus, Alison Etheridge, 2002.
其他参考资料 Supplementary Readings:
Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Steven E. Shreve, Springer,2004
Stochastic Calculus for Finance II: Continuous-Time Models, Steven E. Shreve, Springer, 2004.
Mathematical Models of Financial Derivatives (2rd Edition), Yue-Kuen Kwok, Springer, 2008.