1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
计算金融 Computational Finance
2.
授课院系
Originating Department
金融系 Department of Finance
3.
课程编号
Course Code
FIN401
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
伍继松, 金融系, 13760303662
Jisong WU, Department of Finance, 13760303662
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
MA104 线性代数 Linear Algebra
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
介绍计算金融的基本概念,重要的金融分析理论,实践方法及数值实现;主要介绍二叉树期权定价模型和 Black- Scholes
期权定价模型,蒙特卡罗模拟方法,新型期权,和利率模型等。
To introduce the basic concept and terminology of computational finance, the important theories of financial analysis, and
the practical methods and numerical implementation. To mainly focus on Binomial Tree Option Pricing Model and Black-
Scholes Option Pricing Model, Morte Carlo Simulation Method, Exotic Option and Interest Rate Model.
16.
预达学习成果 Learning Outcomes
使融的
题、解决问题的基本方法,为运用金融分析的理论知识并为掌握更复杂的现代计算方法打好基础。
Students should understand the basic knowledge and terminology of computational finance and its numerical
implementation. They should also master basic concept in computational finance and its fundamental methods in
analyzing and solving the problems. It builds the foundation for financial modelling and analysis as well as for more
complex modern numerical methods.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第一章:市场无套利的等价条件(4 学时)
在本章节中,侧重在概念,定义和法则,状态价格与风险中性概率测度,复制定价技术; 市场完备性
第二章:二叉树模型定价原理 (4 学时)
在本章节中, 侧重二叉树的构,Black-Scholes 定价公式; Black-Scholes 公式分析; 数值计算问题。
第三章:利率期限结构 (4 学时)
在本章节中, 介绍时变波动率情形的二叉树模型,标的资产支付红利情况;美式期权; 数值计算问题
第四章:股票价格的演化模型 (4 学时)
Black-Scholes Black-Scholes 价公Black-Scholes
广; 数值计算问题
第五章:蒙特卡罗模拟定价基本原理 (6 学时)
在本章节中,介绍高效的蒙特卡洛定价方法,有限差分方法
期中考试(1-5 ) (2 学时)
第六章:复合期权 (4 学时)
在本章节中,介绍多维 Black-Scholes 定价公式;双币种期权;一篮子期权, 彩虹期权; 数值计算方法
第七章:障碍期权 (4 学时)
在本章节中,介绍两值障碍期权;亚式期权,回望期权; 数值计算方法
第八章:连续利率期限结构(4 学时)
在本章节中,介绍利率衍生品定价的原理;远期价格与期货价格,利率衍生产品定价的 Black-Scholes 模型 值计算方
第八章:单因素利率模型 (6 学时)
在本章节中,介绍多因素模型,Health-Jarrow-Morton 模型,数值计算方法
总复习(2 学时)
小组作业汇报(2 学时)
期末考试(1-9 ) (2 学时)
Chapter 1: Equivalent Condition for Non-Arbitrage Pricing Principle4 Hours
In this chapter, focus on concepts, definition and rules, State Prices and Risk Neutral Probability MeasureReplication
Pricing Technique; Market Complet
Chapter 2: Binomial Tree Option Pricing Principle4 Hours
In this chapter, focus on The Structure of Binomial Tree; The Term Structure of Interest Rates; Binomial Tree Model with
Time-Varying Volatility;
Chapter 3: The Term Structure of Interest Rates,4 Hours
In this chapter, Introduction to Binomial Tree Model with Time-Varying Volatility;. The Dividend Payment of Underlying
Asset; American Option; Numerical Problems.
Chapter 4: The Evolution of Stock Pricing Models4 Hours
In this chapter, introduction to Black-Scholes Option Pricing Model The Analysis on Black-Scholes Option Pricing
Model; The Extended Black-Schole Option Pricing Models; Numerical Problems
Chapter 5The Basic Principle of Morte Carlo Simulation4 Hours
In this chapter,Introduction to The Efficient Morte Carlo Pricing Methods; Finite Difference Methods
Mid-term evaluation course2 Hours
Chapter 6: Compound Option4 Hours
4
In this chapter, Introduction to Multi-dimensional Black-Scholes Pricing Formula; Quanto Option; Basket Option,
Rainbow Option; Numerical Methods.
.Chapter 7: Barrier Option4 Hours
In this chapter, Introduction to Double Barrier Option; Asian Option Look-Back Option; Numerical Methods.
Chapter 8: Term Structure of Continuous Interest Rates4 Hours
In this chapter, Introduction to The Interest Rate Derivative Pricing Principle; Prices of Forward Contract and Futures
Pricing Interest Rate Derivative in Black Schole Model; Numerical Methods.
Chapter 9: One-factor Interest Rate Model6 Hours
In this chapter, Definition of Multi- factor Interest Rate ModeHealth-Jarrow-Morton ModelNumerical Methods
Final Review2 Hours
Group Project Presentation 2 Hours
Final evaluation course2 Hours
18.
教材及其它参考资料 Textbook and Supplementary Readings
教材 Textbook
Computational Finance: Numerical Methods for Pricing Financial Instruments George Levy Butterworth-Heinemann,
2004.
Computational Finance: An Introductory Course with R, Arratia, Argimiro, Springer, 2014
参考资料 Supplementary Readings
邓留保,李柏年,杨桂元,《Matlab 与金融模型分析》,合肥工业大学出版社,2007 年。
朱世武,《金融计算与建模-理论.算法与 SAS 程序》,清华大学出版社,2007 年。
张树德,《金融计算教程——MATLAB 金融工具箱的应用》,清华出版社,2007
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
10
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
15
平时作业
Assignments
15
期中考试
Mid-Term Test
25
期末考试
35
5
Final Exam
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
 A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority