1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
人工智能及金融应用 Artificial Intelligence and Applications in Finance
2.
授课院系
Originating Department
金融系 Department of Finance
3.
课程编号
Course Code
FIN311
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课(金融学) Major Elective Courses
专业基础必修课(金融工程) Subject-Foundation-Required
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
王新杰,助理教授,金融系
慧园 3 320
xinjie.wang@sustc.edu.cn
0755-8801-8602
WANG, Xinjie, Assistant Professor, Department of Finance
Rm.320, Block 3 Wisdom Valley.
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
40
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
计算机系统设计及应用 A (CS209A)
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
介绍人工智能的一些基本概念,以及基本理论 如智能体, 知识表达,逻辑,搜索等。重点强调构建金融智
能系统所必须的相关技术等。
To introduce the basic concepts in artificial intelligence (AI), as well as basic theories, such as intelligent
agents, knowledge representation schemes, logic, search, etc. The emphasis is on development of financial
intelligent systems by using related AI technologies.
16.
预达学习成果 Learning Outcomes
完成该课程之后,学生应该了解人工智能的一些基本概念,以及构建智能系统所必须的基本理论和相关技术;
并且能够应用所学到的理论和技术来构建简单的金融智能系统。
After completing this course, students should master basic theories and technologies of artificial intelligence.
In addition, they should be also to apply such theories and technologies to develop simple financial
intelligent systems.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
Part 1: Introduction (导论)
Lecture 1 (2 hours) Introduction to the foundations and history of artificial intelligence(简单介绍人工
智能的基础和历史)
Lecture 2 (2 hours) Structure and rationality of intelligent agents(代理人的基础知识,结构,合理性的
定义
Part 2: Problem solving (问题解决)
Lecture 3 (2 hours) Solving problems by searching (应用搜索办法解决问题)
Lecture 4 (2 hours) Beyond classic search: local search, simulated annealing and genetic algorithm
(超越传统搜索,包括有局域搜索,退火算法,基因算法)
3
Lecture 5 (2 hours) Constraint satisfaction problems(在有限制条件下的优化问题。考虑空间态和搜索方
法的相互联系)
Lecture 6 (2 hours) Logical agents, deriving new representations about the world(逻辑代理人,从
的角度来考虑世界的表达和推演)
Lecture 7 (2 hours) Classical Planning, how an agent can take advantage of the structure of a
problem to construct complex plans of action(经典规划,代理人如何能利用问题的结构来构建复杂的行
动)
Lecture 8 (2 hours) Planning and acting in the real world(现实世界的规划,更复杂的代理和更加交互
结构)
Lecture 9 (2 hours) Knowledge Representation, using first-order logic to represent the most
important aspects of the real world(知识表现,如何使用一阶逻辑来表达真实世界最重要的方面)
Lecture 10 (2 hours) Quantifying uncertainty, how agent can tame uncertainty with degrees of belief
(量化不确定性 代理人使用意见的程度来降低不确定性)
Lecture 11 (2 hours) Probabilistic reasoning, how to build network models to reason(概率推理,如何
使用网络模型来推演)
Lecture 12 (2 hours) Probabilistic reasoning over time, interpret the present, understand the past
and predict the future(概率推理时间推演, 解释现在,理解过去和预测未来)
Lecture 13 (2 hours) Making simple decision, making decisions so that it gets what it wants(简单决
定,代理人如何做出决定来达到目的)
Part 3: Learning
Lecture 14 (2 hours) Learning from examples, improving the behaviour through diligent study of
their own experience(从例子中学习,通过学习自己的经历来提高行为)
Lecture 15 (2 hours) Knowledge in learning, examining the problem of learning when you know
something already(知识中的学习,已知知识的学习)
Lecture 16 (2 hours) Learning probabilistic models, learning as a form of uncertain reasoning from
observations(学习概率模型,从不确定的推理来看待学习)
Lecture 17 (2 hours) Reinforcement learning, how an agent can learn from success and failure, form
reward and punishment(强化学习,代理人如何从成功,失败,收益和处罚中学习
Part 4: Communicating, perceiving and acting
Lecture 18 (2 hours) Natural language processing, making use of the copious knowledge(自然语言
处理,使用自然语言的丰富知识)
Lecture 19 (2 hours) Natural Language for communication(交流的自然语言处理)
Lecture 20 (2 hours) Perception, linking computers to the raw, unwashed world(感知,连接计算机到
真实世界)
4
Lecture 21 (2 hours) Robotics, agents endowed with physical effectors(机器人技术)
Lecture 22 (2 hours) Applications in Finance I (金融应用 I
Lecture 23 (2 hours) Applications in Finance II(金融应用 II
Lecture 24 (2 hours) Final presentation(期末报告)
18.
教材及其它参考资料 Textbook and Supplementary Readings
指定教材:
Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Ed. Pearson, 2011.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
10
课堂表现
Class
Performance
10
小测验
Quiz
课程项目 Projects
40
平时作业
Assignments
期中考试
Mid-Term Test
期末考试
Final Exam
期末报告
Final
Presentation
40
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority
5