Lecture 5 (2 hours) Constraint satisfaction problems(在有限制条件下的优化问题。考虑空间态和搜索方
法的相互联系)
Lecture 6 (2 hours) Logical agents, deriving new representations about the world(逻辑代理人,从新
的角度来考虑世界的表达和推演)
Lecture 7 (2 hours) Classical Planning, how an agent can take advantage of the structure of a
problem to construct complex plans of action(经典规划,代理人如何能利用问题的结构来构建复杂的行
动)
Lecture 8 (2 hours) Planning and acting in the real world(现实世界的规划,更复杂的代理和更加交互的
结构)
Lecture 9 (2 hours) Knowledge Representation, using first-order logic to represent the most
important aspects of the real world(知识表现,如何使用一阶逻辑来表达真实世界最重要的方面)
Lecture 10 (2 hours) Quantifying uncertainty, how agent can tame uncertainty with degrees of belief
(量化不确定性, 代理人使用意见的程度来降低不确定性)
Lecture 11 (2 hours) Probabilistic reasoning, how to build network models to reason(概率推理,如何
使用网络模型来推演)
Lecture 12 (2 hours) Probabilistic reasoning over time, interpret the present, understand the past
and predict the future(概率推理时间推演, 解释现在,理解过去和预测未来)
Lecture 13 (2 hours) Making simple decision, making decisions so that it gets what it wants(简单决
定,代理人如何做出决定来达到目的)
Part 3: Learning
Lecture 14 (2 hours) Learning from examples, improving the behaviour through diligent study of
their own experience(从例子中学习,通过学习自己的经历来提高行为)
Lecture 15 (2 hours) Knowledge in learning, examining the problem of learning when you know
something already(知识中的学习,已知知识的学习)
Lecture 16 (2 hours) Learning probabilistic models, learning as a form of uncertain reasoning from
observations(学习概率模型,从不确定的推理来看待学习)
Lecture 17 (2 hours) Reinforcement learning, how an agent can learn from success and failure, form
reward and punishment(强化学习,代理人如何从成功,失败,收益和处罚中学习)
Part 4: Communicating, perceiving and acting
Lecture 18 (2 hours) Natural language processing, making use of the copious knowledge(自然语言
处理,使用自然语言的丰富知识)
Lecture 19 (2 hours) Natural Language for communication(交流的自然语言处理)
Lecture 20 (2 hours) Perception, linking computers to the raw, unwashed world(感知,连接计算机到
真实世界)