Fundamentals of Statistical, Structural, and Neural Pattern Recognition Approaches:
Parametric and Nonparametric Classification, Feature Extraction, Clustering, Self-organizing Nets
for Pattern Recognition, and Formal Languages Representation, Current medical and industrial
applications.
COURSE OUTLINE WEEKS
1. INTRODUCTION ...................................................................................................……………1
1.1 MATHEMATICAL FOUNDATION
2. BAYES DECISION THEORY..............................................................................…………………..2
2.1 Bayes Classier for Continuous Case
2.2 The Gaussian Two-class classifier
2.3 Bayes Classier for Discrete Case
2.4 Error Probability and Receiver Operating Characteristics
3. MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION.................................2
3.1 Maximum Likelihood Estimation
3.2 Application to Bayesian Classification
3.3 Learning the Mean of Gaussian Density Function
4. NONPARAMETRIC TECHNIQUES ........................................................................................3
4.1 Probability Density Estimation
4.2 Parzen Windows Estimation
4.3 k Nearest Neighbor Estimation
4.4 Nearest Neighbor Rule
4.5 k Nearest Neighbor Rule
5. LINEAR DISCRIMINANT FUNCTIONS...................................................................................2
5.1 Linear Discriminant Functions and Decision Surfaces
5.2 The Two-Category Case
5.3 Generalized Linear Discriminant Functions
5.4 Relaxation Procedure
5.5 Minimum Square Error Procedure
5.6 Linear Programming Procedure
R. O. Duda, P. E. Hart and Stork, Pattern Classification and Scene Analysis, Wiley, New York, 2nd
Edition 2001.