教学大纲: 周
1. 课程介绍 ...................................................................................................…………….1-2
1.1 数学基础
1.2 信号与系统
2. 贝叶斯决策论……………..............................................................................…………… 3-5
2.1 连续情况的贝叶斯分类
2.2 高斯二分法
2.3 离散情况的贝叶斯分类
2.4 误差概率与接受端操作刻画
3. 最大可能性与贝叶斯参数估计 ………………………………………………............................ 6-8
3.1 最大可能性估计
3.2 贝叶斯分类应用
3.3 高斯密度函数的期望值
4. 非参数技术………………………… ................................................................................9-12
4.1 概率密度函数
4.2 帕仁窗口估计
4.3 k 最邻估计
4.4 最邻规则
4.5 k 最邻规则
5. 线性判别函数………………………..............................................................................12-16
5.1 线性判别函数与决策面
5.2 两类情况
5.3 一般线性判别函数
5.4 缓和步骤
5.5 最小平方误差方法
5.6 线性规划程序
SYLLABUS
COURSE OUTLINE Week
1. INTRODUCTION ...................................................................................................………1-2
1.1 MATHEMATICAL FOUNDATION
1.2 Signal and System
2. BAYES DECISION THEORY..............................................................................…………… 3-5
2.1 Bayes Classier for Continuous Case
2.2 The Gaussian Two-class classifier
2.3 Bayes Classier for Discrete Case
2.4 Error Probability and Receiver Operating Characteristics
3. MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION.......................... 6-8
3.1 Maximum Likelihood Estimation
3.2 Application to Bayesian Classification
3.3 Mean of Gaussian Density Function
4. NONPARAMETRIC TECHNIQUES ................................................................................9-12
4.1 Probability Density Estimation
4.2 Parzen Windows Estimation
4.3 k Nearest Neighbor Estimation
4.4 Nearest Neighbor Rule
4.5 k Nearest Neighbor Rule
5. LINEAR DISCRIMINANT FUNCTIONS............................................................................12-16
5.1 Linear Discriminant Functions and Decision Surfaces
5.2 The Two-Category Case
5.3 Generalized Linear Discriminant Functions
5.4 Relaxation Procedure
5.5 Minimum Square Error Procedure
5.6 Linear Programming Procedure