1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
光纤通信原理与技术 Fiber Communication Principles and Techniques
2.
授课院系
Originating Department
电子与电气工程
Electrical and Electronic Engineering
3.
课程编号
Course Code
EE308
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
副教授
电子与电气工程系 第二科研楼 525
电话: +86-755-88018552
电邮: luo.d@sustc.edu.cn
Dr. Dan Luo Associate Professor
Department of Electrical and Electronic Engineering, Faculty Research Building 2, room
525
Tel: +86-755-88018552
Email: luo.d@sustc.edu.cn
9.
/
方式
Tutor/TA(s), Contact
徐琳琳,教学工程师,电子与电气工程系
xull@sustc.edu.cn
15338737651
Linlin Xu, Teaching Engineer, Department of Electrical and Electronic Engineering
xull@sustc.edu.cn
15338737651
10.
选课人数限额(不填)
Maximum Enrolment
Optional
50
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
16
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
本课程为光电子和通信专业选修课;其它非光电子和通信专业学生如果想学习光纤通信方
面的知识,也可选修本课程。
This course is optional subject for optoelectronics and communications major; other
non-optoelectronics and non-communications majors can also select it, if you want to
learn fiber optic communications.
14.
其它要求修读本课程的学系
Cross-listing Dept.
None
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程适合光电子、通信专业本科三年级。通过该课程的学习,学生将掌握光纤通信的基本原理和技术,了解光纤通信相
关的各种器件。了解从光纤结构、光源、光功率发射与耦合、光检测接收到波分复用、光放大器以及非线性效应等知识。
This course is suitable for optoelectronics , communications undergraduate year 3 undergraduate. Through this course,
students will master the basic principles and techniques of optical fiber communication , understanding the various
components related to optical fiber communication. Learn from the fiber structure , light source, optical power
transmission and coupling, optical detector receives, WDM , optical amplifiers, and nonlinear effects of such knowledge .
16.
预达学习成果 Learning Outcomes
通过该课程的学习,学生将全面的了解和掌握光纤通信的基本知识构架,具备初步的光纤通信基础知识和实验动手能力,
能够将理论与实际相结合,具备一定的分析能力,和动手能力。
Through this course , students will fully understand and master the basics of fiber optical communication architecture,
and fiber optical communications infrastructure with preliminary knowledge and practical ability , the ability to combine
theory and practice , with some analytical skills, and ability.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
Chapter 1: Overview of Optical Fiber Communications
1.1 Basic Network Information Rates
1.2 The Evolution of Fiber Optic Systems
1.3 Elements of an Optical Fiber Transmission Link
1.4 Simulation and Modeling Tools
1.4.1 Characteristics of Simulation and Modeling Tools
1.4.2 Programming Languages
1.4.3 Sample Simulation and Modeling Tool
1.5 Use and Extension of the Book
1.5.1 References
1.5.2 Simulation Program on a CD-ROM
1.5.3 Photonics Laboratory
Chapter 2: Optical Fibers: Structures, Waveguiding, and Fabrication
2.1 The Nature of Light
2.1.1 Linear Polarization
2.1.2 Elliptical and Circular Polarization
2.1.3 The Quantum Nature of Light
2.2 Basic Optical Laws and Definitions
2.3 Optical Fiber Modes and Configurations
2.3.1 Fiber Types
2.3.2 Rays and Modes
2.3.3 Step-Index Fiber Structure
2.3.4 Ray Optics Representation
2.3.5 Wave Representation in a Dielectric Slab Waveguide
2.4 Mode Theory for Circular Waveguides
2.4.1 Overview of Modes
2.4.2 Summary of Key Modal Concepts
2.4.3 Maxwell's Equations
2.4.4 Waveguide Equations
2.4.5 Wave Equations for Step-Index Fibers
2.4.6 Modal Equation
2.4.7 Modes in Step-Index Fibers
2.4.8 Linearly Polarized Modes
2.4.9 Power Flow in Step-Index Fibers
2.5 Single-Mode Fibers
2.5.1 Mode Field Diameter
2.5.2 Propagation Modes in Single-Mode Fibers
2.6 Graded-Index Fiber Structure
2.7 Fiber Materials
2.7.1 Glass Fibers
2.7.2 Halide Glass Fibers
2.7.3 Active Glass Fibers
2.7.4 Chalgenide Glass Fibers
2.7.5 Plastic Optical Fibers
2.8 Fiber Fabrication
2.8.1 Outside Vapor Phase Oxidation
2.8.2 Vapor Phase Axial Deposition
2.8.3 Modified Chemical Vapor Depositionosition
2.8.5 Double-Crucible Method
2.9 Mechanical Properties of Fibers
2.10 Fiber Optic Cables
Chapter 3: Signal Degradation in Optical Fibers
3.1 Attenuation
3.1.1 Attenuation Units
3.1.2 Absorption
3.1.3 Scattering Losses
3.1.4 Bending Losses
3.1.5 Core and Cladding Losses
3.2 Signal Distortion in Optical Waveguides
4
3.2.1 Information Capacity Determination
3.2.2 Group Delay
3.2.3 Material Dispersion
3.2.4 Waveguide Dispersion
3.2.5 Signal Distortion in Single-Mode Fibers
3.2.6 Polarization-Mode Dispersion
3.2.7 Intermodal Distortion
3.3 Pulse Broadening in Graded-Index Waveguides
3.4 Mode Coupling
3.5 Design Optimization of Single-Mode Fibers
3.5.1 Refractive-Index Profiles
3.5.2 Cutoff Wavelength
3.5.3 Dispersion Calculations
3.5.4 Mode-Field Diameter
3.5.5 Bending Loss
Chapter 4: Optical Sources
4.1 Topics From Semiconductor Physics
4.1.1 Energy Bands
4.1.2 Intrinsic and Extrinsic Material
4.1.3 The pn Junctions
4.1.4 Direct and Indirect Bandgaps
4.1.5 Semiconductor Device Fabrication
4.2 Light-Emitting Diodes (LEDs)
4.2.1 LED Structures
4.2.2 Light Source Materials
4.2.3 Quantum Efficiency and LED Power
4.2.4 Modulation of an LED
4.3 Laser Diodes
4.3.1 Laser Diode Modes and Threshold Conditions
4.3.2 Laser Diode Rate Equations
4.3.3 External Quantum Efficiency
4.3.4 Resonant Frequencies
4.3.5 Laser Diode Structures and Radiation Patterns
4.3.6 Single-Mode Lasers
4.3.7 Modulation of Laser Diodes
4.3.8 Temperature Effects
4.4 Light Source Linearity
4.5 Modal, Partition, and Reflection Noise
4.6 Reliability Considerations
Chapter 5: Power Launching and Coupling
5.1 Source-to-Fiber Power Launching
5.1.1 Source Output Pattern
5.1.2 Power-Coupling Calculation
5.1.3 Power Launching versus Wavelength
5.1.4 Equilibrium Numerical Aperture
5.2 Lensing Schemes for Coupling Improvement
5.2.1 Nonimaging Microsphere
5.2.2 Laser Diode-to-Fiber Coupling
5.3 Fiber-to-Fiber Joints
5.3.1 Mechanical Misalignment
5.3.2 Fiber-Related Losses
5.3.3 Fiber End Face Preparation
5.4 LED Coupling to Single-Mode Fibers
5.5 Fiber Splicing
5.5.1 Splicing Techniques
5.5.2 Splicing Single-Mode Fibers
5.6 Optical Fiber Connectors
5.6.1 Connector Types
5.6.2 Single-Mode Fiber Connectors
5.6.3 Connector Return Loss
5
Chapter 6: Photodetectors
6.1 Physical Principles of Photodiodes
6.1.1 The pin Photodetector
6.1.2 Avalanche Photodiodes
6.2 Photodetector Noise
6.2.1 Noise Sources
6.2.2 Signal-to-Noise Ratio
6.3 Detector Response Time
6.3.1 Depletion Layer Photocurrent
6.3.2 Response Time
6.4 Avalanche Multiplication Noise
6.5 Structures for InGaAs APDs
6.6 Temperature Effect on Avalanche Gain
6.7 Comparison of Photodetectors
Chapter 7: Optical Receiver Operation
7.1 Fundamental Receiver Operation
7.1.1 Digital Signal Transmission
7.1.2 Error sources
7.1.3 Receiver Configuration
7.1.4 Fourier Transform Representation
7.2 Digital Receiver Performance
7.2.1 Probability of Error
7.2.2 The Quantum Limit
7.3 Detailed Performance Calculation
7.3.1 Receiver Noises
7.3.2 Shot Noise
7.3.3 Receiver Sensitivity Calculation
7.3.4 Performance Curves
7.3.5 Nonzero Extinction ratio
7.4 Preamplifier Types
7.4.1 High-Impedance FET Amplifiers
7.4.2 High-Impedance Bipolar Transistor Amplifiers
7.4.3 Transimpedance Amplifier
7.4.4 High-Speed Circuits
7.5 Analog receivers
Chapter 8: WDM Concepts and Components
8.1 Operational Principles of WDM
8.2 Passive Components
8.2.1 The 2 X 2 Fiber Coupler
8.2.2 Scattering Matrix Representation
8.2.3 The 2 X 2 Waveguide Coupler
8.2.4 Star Couplers
8.2.5 Mach-Zehnder Interferometer Multiplexers
8.2.6 Fiber Grating Filters
8.2.7 Phased-Array-Based WDM Devices
8.3 Tunable Sources
8.4 Tunable Filters
8.4.1 System Considerations
8.4.2 Tunable Filter Types
Problems
References
Chapter 9 - Optical Amplifiers
9.1 Basic Applications and Types of Optical Amplifiers
9.1.1 General Applications
6
9.1.2 Amplifier Types
9.2 Semiconductor Optical Amplifiers
9.2.1 External Pumping
9.2.2 Amplifier Gain
9.3 Erbium-Doped Fiber Amplifiers
9.3.1 Amplification Mechanism
9.3.2 EDFA Architecture
9.3.3 EDFA Power-Conversion Efficiency and Gain
9.4 Amplifier Noise
9.5 System Applications
9.5.1 Power Amplifiers
9.5.2 In-Line Amplifiers
9.5.3 Preamplifiers
9.5.4 Multichannel Operation
9.5.5 In-Line Amplifier Gain Control
9.6 Wavelength Converters
9.6.1 Optical Gating Wavelength Converters
9.6.2 Wave-Mixing Wavelength Converters
Chapter 10r -Nonlinear Effects
10.1 Nonlinear effects
10.2 Effective length and the effective area of
10.3 Stimulated Raman Scattering
10.4 Stimulated Brillouin Scattering
10.5 Self-phase modulation
10.6 Cross-phase modulation
10.7 FWM
10.8 Reduce FWM
10.9 Wavelength conversion
10.9.1 Optical gate wavelength converter
10.9.2 Wave mixing wavelength converter
10.10 Soliton
18.
教材及其它参考资料 Textbook and Supplementary Readings
推荐教材 Textbook
Gerd Keiser,光纤通讯 Optical Fiber Communications,第四版, 电子工业出版社。
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
0%
课堂表现
Class
Performance
0%
小测验
Quiz
0%
课程项目 Projects
20%
平时作业
Assignments
10%
期中考试
Mid-Term Test
期末考试
50%
7
Final Exam
期末报告
Final
Presentation
0%
实验
Experiments
20%
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority