1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际课需要或在课程检讨之后产生变动。如对课程有任何疑问,
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
人工智能与机器学习基础/Artificial Intelligence and Machine Learning
2.
授课院系
Originating Department
电子与电气工程系 Department of Electronic and Electrical Engineering
3.
课程编号
Course Code
EE271
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业核心课 Major Core Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
英文 English
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
林志赟 电子与电气工程系 linzy@sustech.edu.cn
LIN, Zhiyun
Department of Electronic and Electrical Engineering
linzy@sustech.edu.cn
9.
验员/、所、联
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(可不)
Maximum Enrolment
Optional
2
11.
授课方式
Delivery Method
讲授
Lectures
实验/
Lab/Practical
其它(具体注明)
OtherPleasespecify
总学时
Total
学时数
Credit Hours
48
0
0
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
MA102B 高等数学(下)A
MA107A 线性代数 A
MA102B Calculus II A
MA107A Linear Algebra A
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
NA
14.
其它要求修读本课程的学系
Cross-listing Dept.
NA
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
This course aims to provide fundamental knowledge and concepts about machine learning and artificial intelligence,
familiarize students with broad classes of machine learning models and algorithms, and inspire students’ interest in
adapting learned machine learning techniques to engineering problems.
本课程旨在提供机器学习和人工智能的基础知识和基本概念,让学生掌握和熟悉各种机器学习的模型和算法,激发学生对
人工智能的兴趣并能够学会使用机器学习的相关方法解决实际工程问题。
16.
预达学习成果 Learning Outcomes
1. Understand fundamental concepts and algorithms about machine learning and artificial intelligence;
2. Grasp skills of machine learning and complex computing problem solving with Python language;
3. Able to apply and adapt the ideas and algorithms from artificial intelligence and machine learning in solving real-world
engineering problems.
1. 理解机器学习和人工智能的基本概念和算法;
2. 掌握使用 Python 语言实现机器学习算法的代码编写以及复杂的计算问题处理;
3. 能够应用人工智能和机器学习的思想和算法解决实际工程问题。
3
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
01. Introduction to artificial intelligence and machine learning (2h) 人工智能与机器学习导论(2 小时)
02. Basics of the Python programming language (2h) Python 编程语言基础(2 小时)
03. Introduction to PyTorch (2h) PyTorch 简介与使用基础(2 小时)
04. Data manipulation and data processing (2h) 数据操作与数据处理(2 小时)
05. Mathematics preliminaries in machine learning (2h) 机器学习中的数学基础知识(2 小时)
06. Regression and linear regression (2h) 回归和线性回归(2 小时)
07. Linear classification (binary) (2h) 线性二分类(2 小时)
08. Logistic regression (2h) 逻辑回归(2 小时)
09. Nearest neighbors (2h) 近邻算法(2 小时)
10. Decision trees (2h) 决策树(2 小时)
11. Multi-class classification (2h) 多分类(2 小时)
12. Multi-layer perceptron and forward propagation (2h) 多层感知机和前向传播(2 小时)
13. Multi-layer perceptron and backward propagation (2h) 多层感知机与反向传播(2 小时)
14. Convolutional neural networks (2h) 卷积神经网络(2 小时)
15. Modern convolutional neural network models (2h) 新型卷积神经网络模型(2 小时)
16. Recurrent neural networks (2h) 循环神经网络(2 小时)
17. Attention and Nadaraya-Watson kernel regression (2h) 注意力机制和 Nadaraya-Watson 核回归模型(2 小时)
18. Optimization in deep learning (2h) 深度学习中的优化方法(2 小时)
19. Clustering (2h) 聚类(2 小时)
20. Principal components analysis (2h) 主成分分析(2 小时)
21. Support vector machine (2h) 支持向量机(2 小时)
22. Kernels (2h) 核方法(2 小时)
23. Ensemble methods: Bagging and boosting (2h) 集成方法:Bagging Boosting2 小时)
24. Ensemble methods: Random forest and mixture of experts (2h) 集成方法:随机森林和混合专家系统(2 小时)
18.
教材及其它参考资料 Textbook and Supplementary Readings
4
C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
A. Downey, Think Python (version 2.0), Green Tea Press, 2012
课程评 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5
课堂表现
Class
Performance
小测验
Quiz
15
课程项目 Projects
40
平时作业
Assignments
期中考试
Mid-Term Test
期末考试
Final Exam
40
期末报告
Final
Presentation
其它(可根据需要
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority
电子与电气工程系
Department of Electronic and Electrical Engineering