1). 复函数和双曲函数(8学时)
第1周:复数运算、极坐标表示、de Moivre’s 定理
第2周:复函数(对数、幂级数),复数简单的应用、微分和积分,双曲函数
2). 复变量函数的微积分(16学时)
第3周:复变函数、复变函数微分、Cauchy–Riemann 关系
第4周:复数项幂级数,多值函数,函数的奇点、零点
第5周:复变函数的环路积分,Cauchy 定理、 Cauchy 积分公式
第6周:Taylor级数和Laurent级数、留数定理、用留数定理计算定积分
3). 偏微分方程:通解和特解(12学时)
第7周:重要的偏微分方程、通解、通解和特解
第8周:波动方程、扩散方程;
第9周:解的特征; 期中考试
4). 偏微分方程:分离变量法(8学时)
第10周:分离变量法、解的叠加
第11周:极坐标系下的分离变量法
5). 常微分方程的级数解(8学时)
第12周:二阶线性常微分方程
第13周:常点的级数解、奇点的级数解
6) 特殊函数(12学时)
第14周:Legendre 函数, 连带 Legendre 函数
第15周:球谐函数
第16周: Bessel 函数
1). Complex numbers and hyperbolic functions
Week 1: Manipulation of complex numbers, Polar representation of complex numbers, de Moivre’s theorem
Week 2: Complex logarithms and complex powers, Applications to differentiation and integration, Hyperbolic functions
2). Complex variables
Week 3: Functions of a complex variable, The Cauchy–Riemann relations
Week4: Power series in a complex variable, Multivalued functions and branch cuts, Singularities and zeros of complex
functions,
Week 5: Complex integrals, Cauchy’s theorem, Cauchy’s integral formula
Week 6: Taylor and Laurent series, Residue theorem, Definite integrals using contour integration
3). Partial differential equations: general and particular solutions
Week 7: Important partial differential equations, General form of solution, General and particular solutions
Week 8: The wave equation, The diffusion equation, Characteristics and the existence of solutions
Week 9: Midterm examination
4). Partial differential equations: separation of variables
Week 10: Separation of variables: the general method, Superposition of separated solutions
Week 11: Separation of variables in polar coordinates
5). Series solutions of ordinary differential equations
Week 12: Second-order linear ordinary differential equations
Week 13: Series solutions about an ordinary point, Series solutions about a regular singular point
6) Special functions
Week 14: Legendre functions, Associated Legendre functions
Week 15: Spherical harmonics
Week 16: Bessel functions