课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
CSE5002/智能数据分析 Intelligent Data Analysis
2.
课程性质
Compulsory/Elective
专业选修课 Major elective course
3.
课程学分/学时
Course Credit/Hours
3/6432 Lectures+32 Labs
4.
授课语
Teaching Language
中文 Chinese
5.
授课教
Instructor(s)
袁博,助理教授,计算机科学与工程系,yuanb@sustech.edu.cn
Bo Yuan, Assistant Professor, Department of Computer Science and
Engineering, yuanb@sustech.edu.cn
6.
是否面向本科生开放
Open to undergraduates
or not
Not
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
线性代数,概率与统计
Linear Algebra, Probability and Statistics
8.
教学目
Course Objectives
介绍智能数据分析的基本思法,并侧重于基本析任类和
课,本课程将涵盖多种分类和聚类算法、输出校正、模型选择、数据表征(特征分析)、排序学习、相关性分析等。
本课程的目的是让每一位学生了解和掌握针对智能数据分析的一些基本思想、算法和工具,以便于为学生将来的研究
和工作打下基础。
This course will provide an introduction to intelligent data analysis with special emphasis on
fundamental data analysis tasks such as classification and clustering. Through lectures and labs, we
will explore topics including classification and clustering algorithms, output calibration and model
selection, data representation (feature analysis), learning-to-rank, correlation analysis, etc. The
objective of this course is to enable each student to understand and master some basic ideas,
algorithms and tools for intelligent data analysis tasks, so as to have a foundation for their further
research and work.
9.
教学方
Teaching Methods
理论课+实验课
32 lectures and 32 labs
10.
教学内
Course Contents
Section 1
课程介绍 Introduction
Section 2
线性判别模型 Linear Discriminant Models
Section 3
支持向量机 Support Vector Machines
Section 4
神经网络 Neural Networks
Section 5
决策树 Decision Trees
Section 6
生成模型 Generative Models
Section 7
多分类器系统 Multiple Classifier Systems
Section 8
输出矫正和模型选择 Output Calibration and Model Selection
Section 9
机器学习理论 Theoretical Foundation of Machine Learning
Section 10
聚类 Clustering
Section 11
特征分析和降 Feature Analysis and Dimensionality Reduction
Section 12
排序学习 Learning to rank
Section 13
图数据挖掘 Mining Graph Data
Section 14
Imbalanced Learning and Cost-sensitive
Learning
Section 15
Semi-supervised, Active and Incremental
Learning
Section 16
课程总结和回 Summary and Review
11.
课程考
Course Assessment
1
Form of examination
2
. grading policy
3
If the course is open to undergraduates, please indicate the difference.)
平时作 Assignments 30%
课程项 Projects 20%
期末考 Final Exam 50%
12.
教材及其它参考资料
Textbook and Supplementary Readings
T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and
Prediction
Christopher M. Bishop,Pattern Recognition and Machine Learning