理论课 (32 学时) LECTURE (32 Credit Hours):
Lec1 介绍 Introduction
Lec2 智能体 Intelligent agent
Lec3 无信息搜索 Uninformed Search
Lec4 有信息搜索 Informed Search
Lec5 局部搜索 Local Search
Lec6 对抗搜索(博弈) Adversarial Search (Game)
Lec7 约束满足问题 Constraint satisfaction problem
Lec8 命题逻辑 Propositional logic
Lec9 一阶逻辑 First order logic
Lec10 机器学习概念 Machine Learning Concepts
Lec11 线性回归和逻辑回归 Linear Regression & Logistic Regression
Lec12 感知器和神经网络 Perceptron & Neural Networks
Lec13 决策树和朴素贝叶斯 Decision tree & Naive Bayes
Lec14 集成学习和聚类 Ensemble learning & Clustering
Lec15 自然语言处理 Natural language processing
Lec16 总结 Summary and Review
实验课(32 学时) LAB (32 Credit Hours):
Lab1 Python 介绍 Introduction to Python I
Lab2 Python 介绍 Introduction to Python II
Lab3 无信息搜索及实现 Uninformed Search and Implementation
Lab4 有信息搜索其实现 Informed Search and Implementation
Lab5 局部搜索及实现 Local Search and Implementation
Lab6 对抗搜索(博弈)及实现 Adversarial Search (Game) and Implementation
Lab7 约束满足问题及其实现 Constraint satisfaction probem and Implementation
Lab8 命题逻辑及实现 Propositional logic and Implementation
Lab9 一阶逻辑及实现 First order logic and Implementation
Lab10 机器学习基础及实现 Machine Learning Concepts and Implementation
Lab11 线性回归和逻辑回归及实现 Linear Regression & Logistic Regression and Implementation
Lab12 感知器和神经网络及实现 Perceptron & Neural Networks and Implementation
Lab13 决策树和朴素贝叶斯及实现 Decision tree & Naive Bayes and Implementation
Lab14 集成学习和聚类及实现 Ensemble learning & Clustering and Implementation
Lab15 自然语言处理及实现 Natural language processing and Implementation
Lab16 总结 Summary and Review