先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
CS102A 计算机程序设计基础 A Introduction to Computer Programming A
CS203 数据结构与算法分析 Data Structures and Algorithm Analysis
MA102B 高等数学(下)A Calculus II A
MA103A 线性代数 I-A Linear Algebra I-A
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
其它要求修读本课程的学系
Cross-listing Dept.
本课程首先介绍计算机视觉,包括视觉技术发展历程,图像形成原理,图像处理以及特征检测和匹配。在此基础上,我们
将开发应用程序的基本方法,包括用于场景理解的语义分割,用于运动估计的基于视频的对象跟踪,基于图像的人体姿势
估计以及用于交叉相机对象重识别的图像匹配技术。本课程的重点是在学习与理解算法与数学基础上,然后了解项目中理
论与实践的区别,进而全面掌握计算机视觉技术理论与应用技巧。
This course provides an introduction to computer vision including history of vision techniques, fundamentals of image
formation, image processing, and feature detection and matching. We'll develop basic methods for applications that
include semantic segmentation for scene understanding, video-based object tracking for motion estimation, human pose
estimation from images and image matching for cross-camera object re-identification. The focus of the course is to
develop the intuitions and mathematics of the methods in lecture, and then to learn about the difference between theory
and practice in the projects.
完成该课程,学生能够做到:
1. 了解视觉计算的理论和实践。 能够将计算机视觉与人类视觉的问题联系起来。
2. 能够描述图像形成和图像分析的基础。
3. 熟悉计算机视觉中涉及的主要技术方法。 描述用于图像中的配准,对齐和匹配的各种方法。
4. 了解导致图像对象和场景分类的高级概念。
5. 构建计算机视觉应用。
1. Recognize and describe both the theoretical and practical aspects of computing with images. Connect issues from
Computer Vision to Human Vision
2. Describe the foundation of image formation and image analysis.
3. Become familiar with the major technical approaches involved in computer vision. Describe various methods used for
registration, alignment, and matching in images.
4. Get an exposure to advanced concepts leading to object and scene categorization from images.
5. Build computer vision applications.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)