1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
数理逻辑导论 Introduction to Mathematical Logic
2.
授课院系
Originating Department
计算机科学与工程系 Department of Computer Science and Engineering
3.
课程编号
Course Code
CS104
4.
课程学分 Credit Value
2
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
程京德,教学教授,计算机科学与工程系,chengjd@sustech.edu.cn
Jingde Cheng, Teaching Professor, Department of Computer Science and Engineering,
chengjd@sustech.edu.cn
9.
/助教系、
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
0
0
0
32
2
Credit Hours
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
none
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
All theoretical courses for Computer
Science, Intelligent Sciences, and Artificial Intelligence
14.
其它要求修读本课程的学系
Cross-listing Dept.
数学系 Dept. of Mathematics
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
作为 UNISCO 推荐科学技术领域分类中基础学科之首的逻辑学,是包括数学、计算机科学、智能科学在内的诸多学科之最重
要的理论基础。理逻辑导课程对于数理逻辑的基本概念、原理、方法论以及重要结果给予学生一个入门性介绍,
为今后深入学习研究现代逻辑及其应用的学生提供研究逻辑学课题的良好基础,为今后深入学习研究各学科理论课题的学
生提供使用逻辑学方法论的基本素养。但是,因为这是一门理论性极强的课程,今后有志于从事工程技术工作的学生可不
必选修此课。
数理逻辑导论程的教学目标为:(1让学生知道逻辑学的本质、目的、基本假设、范围、方法论。(2让学生
道经典数理逻辑的本质、目的、基本假设、范围、应用领域。3)让学生熟知经典数理逻辑中的命题演算部分。4
学生熟知经典数理逻辑中的一阶谓词演算部分。(5让学生知道经典数理逻辑的局限性以及对经典数理逻辑的一些经典保
存扩张及非经典替代。
Logic, as the first fundamental discipline in the fields of science and technology recommended by UNISCO, is the most
important theoretical foundation for many disciplines, including mathematics, computer science, and intelligent science.
The course "Introduction to Mathematical Logic" gives students an elementary introduction to the basic concepts,
principles, methodology and important results of mathematical logic. It provides a good foundation for students to study
modern logic and its application in depth, and also provides students with basic qualities of using logic methodology for
further study and research of theoretical subjects in various disciplines. However, students interested in engineering and
technical jobs in the future need not take this course, because this course is a quite theoretical one.
The teaching objectives of the course "Introduction to Mathematical Logic" are: (1) Let students know the essence,
purpose, basic assumptions, scope, and methodology of logic. (2) Let students know the essence, purpose, basic
assumptions, scope, and application fields of classical mathematical logic. (3) Let students be familiar with the
propositional calculus in classical mathematical logic. (4) Let students be familiar with the first-order predicate calculus in
classical mathematical logic. (5) Let students know the limitations of classical mathematical logic and some classical
conservative expansions and non-classical alternates of classical mathematical logic.
16.
预达学习成果 Learning Outcomes
逻辑导论课程预达习效为:1生能在遇任何题时借在课程习到逻辑识辨出问
中的辑要素从依据本课学习的逻知识犯或犯逻错误2学生够使经典理逻来形化地
达经验领域知识以及构造经验领域形式理论。3学生能够使用经典数理逻辑以及自动推理/证明工具解决经验领域中的
推理/问题4学生够清地识出由于经数理辑的限性导致经验域应用困课题5学生
够基于本课程学习到的知识进一步学习研究现代逻辑各个分支及其应用。
The learning outcomes of the course "Introduction to Mathematical Logic" is as follows: (1) When students encounter any
problem, they can identify those logic-related elements in the problem by applying the logic knowledge learned in this
course, and therefore, they can avoid or minimize logical mistakes based on the logic knowledge learned in this course.
(2) Students can use classical mathematical logic to formally represent knowledge in the empirical field and construct
3
formal theories in the empirical field. (3) Students can use classical mathematical logic and automatic reasoning/proof
tools to solve reasoning/proof problems in the empirical field. (4) Students can clearly identify those difficult issues in the
empirical field application that are due to the limitations of classical mathematical logic. (5) Students can further study
various branches of modern logic and their applications based on the knowledge acquired in this course.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
32 hours in total. 2 hours lecture for each week. Corresponding to the following sections
1. Guidance and Mathematical Preliminaries
2. Logic: What Is It and Why Study It?
3. Basic Concepts of Logic: Reasoning, Proving, Discovery, Prediction, Argument, Deduction, Induction, and Abduction
4. Basic Concepts of Logic: Truth, Validity, and Fallacies
5. The Notion of a Conditional: The Heart of Logic
6. Logic: What Is It All About? (Mathematical Logic and Various Philosophical Logics)
7. Formal Logic Systems and Formal Theories: Model (Semantic) Theory and Proof (Syntactic) Theory
8. Formal (Object) Language of Classical Propositional Calculus (CPC) and Model Theory for CPC
9. Hilbert Style Formal System for CPC and Its Soundness and Completeness
10. Other Formal Systems for CPC
11. Formal (Object) Language of Classical First Order Predicate Calculus (CFOPC)
12. Model Theory for CFOPC
13. Hilbert Style Formal System for CFOPC and Its Soundness and Completeness
14. Other Formal Systems for CFOPC
15. Limitation of Formal Systems: Gödel’s Incompleteness Theorems
16. High-Order Logic Systems
共计 32 小时,每周两小时理论课,对应以下章节:
1. 导引与数学预备知识
2. 什么是逻辑学?为什么要学习和研究逻辑学?
3. 逻辑学的基本概念:推理、证明、发现、预测、论证、演绎、归纳和假说生成
4. 逻辑学的基本概念:真理、有效性和谬误
5. 条件句概念:逻辑学的核心
6. 逻辑学的范围(数理逻辑和各种哲学逻辑)
7. 形式逻辑系统与形式理论:模型(语义)理论与证明(语法)理论
8. 经典命题演算的形式(对象)语言与模型理论
9. 经典命题演算的希尔伯特形式化系统及其健全性和完全性
10. 经典命题演算的其他形式系统
11. 经典一阶谓词演算的形式(对象)语言
12. 经典一阶谓词演算的模型理论
13. 经典一阶谓词演算的希尔伯特形式化系统及其健全性和完全性
14. 经典一阶谓词演算的其他形式系统
4
15. 形式系统的局限性:哥德尔不完全性定理
16. 高阶逻辑系统
18.
教材及其它参考资料 Textbook and Supplementary Readings
M. Copi and C. Cohen, “Introduction to Logic,”Routledge, 2019 (with V. Rodych) (15th Edition).
P. J. Hurley, “A Concise Introduction to Logic,” Wadsworth, 2016 (with L. Watson) (13th Edition).
G. Restall, “Logic: An Introduction,” Routledge, 2006.
G. Priset, “Logic: A Very Short Introduction,” Oxford University Press, 2000.
E. Mendelson, “Introduction to Mathematical Logic,” Chapman & Hall, 2015 (6th Edition).
R. M. Smullyan, “A Beginner’s Guide to Mathematical Logic,” Dover Publications, 2014.
M. Ben-Ari, “Mathematical Logic for Computer Science,” Springer, 2012 (3rd Edition).
W. Routenberg, “A Concise Introduction to Mathematical Logic,” Springer, 2010 (3rd Edition).
S. Reeves and M. Clarke, “Logic for Computer Science,” Addison-Wesly, 1990-2003.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
50
期中考试
Mid-Term Test
期末考试
Final Exam
50
期末报告
Final
Presentation
5
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority