作为 UNISCO 推荐科学技术领域分类中基础学科之首的逻辑学,是包括数学、计算机科学、智能科学在内的诸多学科之最重
要的理论基础。“数理逻辑导论”课程对于数理逻辑的基本概念、原理、方法论以及重要结果给予学生一个入门性介绍,
为今后深入学习研究现代逻辑及其应用的学生提供研究逻辑学课题的良好基础,为今后深入学习研究各学科理论课题的学
生提供使用逻辑学方法论的基本素养。但是,因为这是一门理论性极强的课程,今后有志于从事工程技术工作的学生可不
必选修此课。
“数理逻辑导论”课程的教学目标为:(1)让学生知道逻辑学的本质、目的、基本假设、范围、方法论。(2)让学生知
道经典数理逻辑的本质、目的、基本假设、范围、应用领域。(3)让学生熟知经典数理逻辑中的命题演算部分。(4)让
学生熟知经典数理逻辑中的一阶谓词演算部分。(5)让学生知道经典数理逻辑的局限性以及对经典数理逻辑的一些经典保
存扩张及非经典替代。
Logic, as the first fundamental discipline in the fields of science and technology recommended by UNISCO, is the most
important theoretical foundation for many disciplines, including mathematics, computer science, and intelligent science.
The course "Introduction to Mathematical Logic" gives students an elementary introduction to the basic concepts,
principles, methodology and important results of mathematical logic. It provides a good foundation for students to study
modern logic and its application in depth, and also provides students with basic qualities of using logic methodology for
further study and research of theoretical subjects in various disciplines. However, students interested in engineering and
technical jobs in the future need not take this course, because this course is a quite theoretical one.
The teaching objectives of the course "Introduction to Mathematical Logic" are: (1) Let students know the essence,
purpose, basic assumptions, scope, and methodology of logic. (2) Let students know the essence, purpose, basic
assumptions, scope, and application fields of classical mathematical logic. (3) Let students be familiar with the
propositional calculus in classical mathematical logic. (4) Let students be familiar with the first-order predicate calculus in
classical mathematical logic. (5) Let students know the limitations of classical mathematical logic and some classical
conservative expansions and non-classical alternates of classical mathematical logic.
“数理逻辑导论”课程的预达学习效果为:(1)学生能够在遇到任何问题时凭借在本课程学习到的逻辑知识辨别出问题
中的逻辑要素从而依据在本课程学习到的逻辑知识不犯或少犯逻辑错误。(2)学生能够使用经典数理逻辑来形式化地表
达经验领域知识以及构造经验领域形式理论。(3)学生能够使用经典数理逻辑以及自动推理/证明工具解决经验领域中的
推理/证明问题。(4)学生能够清楚地识别出由于经典数理逻辑的局限性所导致的经验领域应用困难课题。(5)学生能
够基于本课程学习到的知识进一步学习研究现代逻辑各个分支及其应用。
The learning outcomes of the course "Introduction to Mathematical Logic" is as follows: (1) When students encounter any
problem, they can identify those logic-related elements in the problem by applying the logic knowledge learned in this
course, and therefore, they can avoid or minimize logical mistakes based on the logic knowledge learned in this course.
(2) Students can use classical mathematical logic to formally represent knowledge in the empirical field and construct