1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
计算化学 Computational Chemistry
2.
授课院系
Originating Department
化学系 Department of Chemistry
3.
课程编号
Course Code
CH401
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中文 Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
李炳瑞 教授,13919413455
Bingrui Li, Professor. Mobile: 13919413455
9.
/
方式
Tutor/TA(s), Contact
NA
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
64
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
物理化学 IICH302
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
计算化学是以计算机为工具,从量子力学、分子力学、统计力学等基础理论出发,借助于计算软件来解决物质性质等化学
相关问题的新学科。计算化学课程是多学科交叉的边缘课程,其内容不仅涉及结构化学、量子化学,还包含从头计算方
法、密度泛函方法、半经验方法、分子力学、分子动力学等原理与计算方法。在计算软件部分,将根据软件资源等条件,
将目前较为广泛使用的 GaussianGaussViewHyperChemChem Office 等分子建模、化学作图、科学作图和计算软
件的使用等引入教学。在典型算例部分,将利用计算软件获得物质的几何结构,分子轨道,电荷分布,振动频率,振动光
谱,热化学数据,以及简单化学反应的过渡态等。使学生掌握应用计算化学解决化学相关问题的基本概念、基本原理、基
本方法和基本技能,拓宽学生的理论基础,培养学生的创新意识。
Computational Chemistry is a new subject which uses computer as a tool, starting from the basic theories of quantum
mechanics, molecular mechanics, statistical mechanics and so on, and using computational software to solve the
chemical related problems such as the properties of substances. Computational Chemistry is a multi-disciplinary and
interdisciplinary course. Its contents not only involve structural chemistry and quantum chemistry, but also include ab
initio method, density functional method, semi-empirical method, molecular mechanics, molecular dynamics and other
principles and calculation methods. In the part of computing software, we will introduce molecular modelling, chemical
mapping, scientific mapping and the use of computing software, such as Gaussian, GaussView, HyperChem and Chem
Office, which are widely used at present, into teaching according to the conditions of software resources. In the part of
typical examples, the geometrical structure, molecular orbital, charge distribution, vibration frequency, vibration spectrum,
thermochemical data and transition states of simple chemical reactions will be obtained by using the calculation software.
To enable students to master the basic concepts, principles, methods and skills of applying computational chemistry to
solve chemistry-related problems, broaden students' theoretical basis and cultivate students' innovative consciousness.
16.
预达学习成果 Learning Outcomes
使学生掌握应用计算化学解决化学相关问题的基本概念、基本原理、基本方法和基本技能,能够比较熟练地执行单点能、
分子基态和过渡态的几何构型优化、频率分析等作业类型的计算,拓宽学生的理论基础,培养学生的创新意识,提高理论
联系实际的能力,为使用计算化学进行科研打下基础。
To enable students to master the basic concepts, basic principles, basic methods and basic skills of applying
computational chemistry to solve chemistry-related problems, to be able to perform the calculation of single-point energy,
geometry optimization of molecular ground state and transition state, frequency analysis and other types of assignments
more skilfully, to broaden students' theoretical basis, to cultivate students' innovative consciousness, and to improve their
ability to integrate theory with practice, so as to enable them to lay a foundation for scientific research with computational
chemistry.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
64 学时16 32 学时实习 32 习之化学
理,所以,开课第 1-2 周全部为课堂讲授,第 3-14 周为课堂讲授与上机实习交替进行(即每周课堂讲授一次 2 学时,上机
实习一次 2 学时),第 15-16 周全部为上机实习。
This course consists of 64 hours, 16 weeks. Among them, 32 hours of lecture and 32 hours of computer practice are
given. Because the basic principles of computational chemistry must be studied before the computer practice, the first
two weeks of the course are all lectures in the classroom, the third to fourteenth weeks are alternately lectures in the
classroom and on the computer practice (that is, two hours a week in the classroom, two hours in the computer practice),
and the fifteenth to sixteenth weeks are all on the computer practice.
一、课堂讲授 32 学时,内容和学时分配如下:
1 理论背景知识(Background of Theory 学时:1
1.1 导论(Introduction
1.2 ab initio 的三个近似(Three Approximations of Ab initio
1.3 变分原理(Variational Principle
1.4 维里定理(Virial theorem
1.5 原子单位制(Atomic Units
1.6 量子化学标准态(Standard State of Quantum Mechanics
2 量子化学中的数学(Mathematics of Quantum Chemistry 学时:2
2.1 Dirac 符号 ( Dirac Symbol)
2.2 量子化学积分(Quantum Chemical Integrations
2.3 两种矢量空间(Two Vector Spaces
2.4 Schmidt 正交化与 Lowdin 正交化(Schmidt and Lowdin‘ s Orthogonalization
2.5 展开定理(Expansion Theorem
2.6 线性变换(Linear Transformation
2.6.1 一些重要的方阵(Some Important Square Matrices
2.6.2 相似变换(Similarity Transformation
2.7 本征值问题的矩阵表述(The Matrix Expression of Eigenvalue Problems
2.8 Hermite 方阵的对角化(The Diagonalization of the Hermitian Matrix )
3 分子轨道理论与自洽场方法(Molecular Orbital Theory and Self-Consistent Field Method 学时:3
3.1 Slater 行列式(Slater Determinants
4
3.2 组态相互作用(Configuration Interaction, CI
3.3 LCAO-MO
3.4 分子的状态对称性(State Symmetry of Molecules
3.5 自洽场的基本思想(The Basic Idea of Self-Consistent Field
3.6 Hartree 方程与 Hartree-Fock 方程(Hartree Equation and Hartree-Fock Equation
3.7 矩阵元的计算:Slater 规则(The Computation of Matrix Elements: Slater Rule
3.8 Hartree-Fock-Roothaan 方程(Hartree-Fock-Roothaan Equation
3.8.1 单电子积分(Single Electron Integral
3.8.2 双电子积分: J 积分与 K 积分(Double Electron Integral: J and K Integrals
3.8.3 HFR 方程(HFR Equation
3.9 HFR 方程的求解过程:SCF 流程图(The Solving HFR Equation: SCF Flow Chart
3.10 半经验方法简介(Introduction to Semi-Empirical Methods
4 计算方法与基组(Computing Method and Basis Sets 学时:2
4.1 计算方法(Computing Methods
4.2 基组(Basis Sets
5 三种主要作业类型(Three Main Job Types 学时:5
5.1 Gaussian GaussViewGaussian and GaussView
5.2 分子几何与 Z-矩阵(Molecular Geometry and Z-Matrix
5.3 单点能量计算 ( Calculation of Single Point Energy )
   5.3.1 分子总能量(Total Energy of Molecule
5.3.2 分子轨道与能级(Molecular Orbitals and Energy Levels
   5.3.3 电荷分布(Charge Distribution
5.3.4 偶极矩和多极矩(Dipole Moment and Multipole Moment
5.4 分子几何构型优化(Molecular Geometry Optimization
5.4.1 势能面(The Potential Energy Surface
5.4.2 能量极小构型的优化(Optimization of Energy Minimal Configuration
5.4.3 过渡态的优化(Optimization of Transition State
5
5.5 频率计算与分析(Frequency Calculation and Analysis
5.5.1 稳定点与鞍点的表征(Characterization of Stable Points and Saddle Points
  5.5.2 红外与拉曼光谱(Infrared and Raman Spectroscopy
  5.5.3 热力学数据与零点能(Thermodynamic data and Zero-Point Energy
5.5.4 极化率与超极化率(Polarization and Hyperpolarization
6 Post-SCF 学时:2
6.1 Hartree-Fock 理论的局限性(Limitations of H-F Theory
6.2 电子相关能校正(Electronic Correlation Energy Correction
6.2.1 CI 方法(CI Methods
6.2.2 MPn 方法(MPn Methods
6.2.3 CC QCI 方法(CC and QCI Methods
6.2.4 DFT 方法(DFT Methods
7 计算化学其它常用软件(The Other Common used Softwares of Computational Chemistry
学时:4
7.1 HyperChem
7.1.1 主要概念,工具条和菜单条(Main Concepts, Toolbars and Menu Bars
7.1.2 任务类型(Task Types
7.2 ChemOffice
7.2.1 ChemDraw
7.2.2 Chem3D
7.2.3 ChemFinder
7.3 AMPAC
8 计算化学在科学研究中的应用(Application of Computational Chemistry in Scientific Research
学时:7
8.1 高精度能量模型(Energy Mode of High Precision
8.1.1 MP2 方法(MP2 Method
8.1.2 CCCoupled Cluster Method
6
8.1.3 DFT
8.1.4 组合方法:CBS G2Combination method: CBS and G2
8.2 分子参数的计算(Calculation of Molecular Parameters
8.3 在化学热力学中的应用(Applications for Thermodynamics
8.4 在化学动力学中的应用(Applications for Chemical Dynamics
8.4.1 PES
8.4.2 反应途径与 IRCReaction Pathway and IRC
8.4.3 寻找过渡态结构:QST2 QST3QST2 and QST3
8.5 分子波函数的解释与应用(Interpretation and Application for Molecular Wave Functions
8.5.1 电荷转移配位化合物(Charge Transfer Coordination Compounds
8.5.2 电环化中的次级效应(Secondary Effects in Electrocyclization
8.5.3 己二烯 Cope 重排的过渡态(Transition State of Cope Rearrangement of Hexadien
8.5.4 乙烯二聚的同面与异面方式(Homogeneous and Heterogeneous Patterns of Ethylene Dimerization
8.5.5 臭氧损耗:动力学研究(Study on the Dynamics of Ozone Depletion
8.5.6 离域轨道与定域轨道(Canonical and Localized Molecular Orbits
8.6 催化剂研究(Study on Catalysts
8.6.1 表面合金催化剂设计一例(An Example of Surface Alloy Catalyst Design
8.6.2 分子筛催化(Zeolite catalysis
8.7 洋葱算法(ONIOM
8.8 液态模拟(Simulation of Liquids
8.9 超分子体系:弱相互作用(Supramolecular System: Weak Interaction
8.10 电场中的分子(Molecules in Electric Field
8.11 周期性体系的计算(Calculation of Periodic Systems
8.12 光谱的理论计算(Theoretical Calculation for Spectrum
8.12.1 VCD 谱(VCD Spectrum
8.12.2 NMR 谱(NMR Spectrum
8.12.3 ESR 的超精细偶合常数(Ultra-Fine Coupling Constants of Free Radicals
7
8.12.4 电子光谱(Electronic Spectrum
9 QSAR 与药物设计(QSAR and Drug Design, CADD 学时:3
9.1 QSAR 简介(Introduction of QSAR
9.2 常用结构参数及理论计算(Commonly Used Structural Parameters and Theoretical Calculation
9.3 1D 2D-QSAR1D and 2D-QSAR
9.3.1 多元线性回归(Multiple Linear Regression
9.3.2 模式识别方法(Pattern Recognition Method
9.4 3D-QSAR: CoMFA
9.5 人工神经网络(Artificial Neural Network
9.6 支持向量机简介(Introduction to Support Vector Machines
10 材料性质的计算(Computing of Material properties 学时:3
10.1 能带理论基础(The Basis of Energy Band Theory
10.1.1 近自由电子近似模型(Model of NFE
10.1.2 紧束缚近似模型(Model of TBA
10.1.3 维格纳-赛兹晶胞与布里渊区的 k
10.2 利用 Gaussian 计算周期性体系(Calculating Periodic Systems with Gaussian
10.3 实例:有机发光材料计算(Example: Computing of Organic Luminous Materials
10.4 Materials Studio 简介(Introduction of Materials Studio
二、上机实习 32 学时,分 16 次进行。内容包括:
入门知识:Z-矩阵的构造,虚原子的使用,GaussView 的用法
GaussianHyperChem 等程序的用法
单点能计算
分子稳定构型的几何优化
过渡态构型的几何优化
红外与 Raman 光谱的计算
热力学数据的计算
8
用高精度方法(G2CBS 等)计算能量
势能面扫描(PES
IRC 计算
利用 QST2 确定过渡态
VCD 谱计算
NMR 计算
电子光谱计算
ESR 超精细耦合常数和自旋密度计算
溶剂效应计算
周期性体系的计算
Computing practice, 32 hours, 16 times. The contents include:
Introduction: Z-matrix construction, virtual atom usage, GaussView usage
Usage of Gauss, HyperChem and other programs
Calculation for Single point energy
Geometric optimization of molecular stable configurations
Geometric optimization of transition state
Computation of Infrared and Raman spectrum
Calculation of Thermodynamic Data
Calculating Energy with High Precision Method (G2, CBS, etc.)
Potential Energy Surface Scanning (PES)
IRC computing
Determination Of Transition States Using QST2
VCD spectrum calculation
NMR spectrum calculation
Electronic Spectrum Computation
Calculation of ESR Hyperfine Coupling Constants and Spin Density
Calculating for Solvent effect
9
Calculation of periodic systems
18.
教材及其它参考资料 Textbook and Supplementary Readings
[1]Frisch A, Frisch M J, Trucks G W. GAUSSIN 03 User’s Reference. GAUSSIAN Inc. 2003.
[2]Foresman J B, Frisch Æ. Exploring Chemistry with Electronic Structure Methos. 2nd ed. Pittsburgh: GAUSSIAN Inc.,
1996.
[3]Hehre W J,Radom L, Pople J A, et al. Ab Initio Molecular Orbital Theory[M]. New York:John Wiley & Sons, 1986.
[4]Errol G.Lewars. Computational Chemistry
[5]David C. Young.Computational Chemistry
[6]MuthukumarassmyKarthikeyan et al. Practical Chemoinformatics
[7]林梦海. 量子化学计算方法与应用[M]. 北京: 科学出版社, 2004.
互联网资源:
[1]http://www.docin.com/p-379293984.html
[2]http://www.wpi.edu/Pubs/E-project/Available/E-project-031014-
153531/unrestricted/Computational_Chemistry_in_the_High_School_Classroom.pdf
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
10
Class
Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
期中考试
Mid-Term Test
30
期末考试
Final Exam
40
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
30
上机实习
Computing practice
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority
化学系教学指导委员会
Teaching committee of the chemistry department