Scheduled lecture topics:
Lecture 1. 概述/Introduction (2 学时)
医学成像系统;医学图像处理与分析;医学图像应用研究
Medical imaging system; Medical image processing and analysis; Medical image applications
Lecture 2. 图像基础/ Basics for Image Formation (3 学时)
人眼的成像基础;电子探测器;采样;量化;噪声;相关数学工具
Image formation by the human eyes; Electronic detectors; Sampling; Quantization; Noise; Related Mathematical tools
Lecture 3. 图像增强技术/Image Enhancement(3 学时)
灰度变换函数; 灰度直方图; 空间滤波器; 卷积; 平滑空间滤波器;锐化空间滤波器
Grey scale transformations; Histogram; Spatial filter; Convolution operator; Smoothing spatial filters, Sharpening
spatial filters
Lecture 4. 频域变换/ Frequency domain transformation(3 学时)
2 维傅里叶变换和 2 维线性移不变系统;频域滤波基础;频域平滑滤波器;频域锐化滤波器
2D Fourier transform and 2D linear shift-invariant system;Basics of filtering in the Frequency Domain; Image
smoothing using frequency Domain filters; Image sharpening using frequency domain filters
Lecture 5. 几何变换和图像配准 Geometric transformation and Image registration(4 学时)
刚体变换;放射变换;透视变换;非线性变换;图像卷绕;插值;图像配准方法
Rigid Body Transformation; Affine Transformation; Perspective Transformation; Nonlinear Transformation; Image
Warping; Methods for image registration
Lecture 6. 图像复原/ Image restoration(2 学时)
噪声模型;空间滤波器复原;频域滤波器复原;维纳滤波
Noise model; Restoration using spatial filter; Restoration using frequency domain filter; Wiener filter
Lecture 7. 图像分割 1/ Image segmentation 1(2 学时)
图像分割基础;边缘分割;阈值化
Fundamentals; Edge Detection; Thresholding
Lecture 8. 图像分割 2/ Image segmentation2(2 学时)
形态学图像处理,灰度形态学;分水岭分割
Morphological Image Processing; Gray-scale morphology; Watershed Segmentation
Lecture 9. 三维和彩色可视化/ 3D and color visualization(2 学时)
相机光学;最大光强投影;彩色模型;彩色变换;彩色图像处理
Camera Optics; Maximum Intensity Projection; Color Models; Color Transformations; Color Image Processing
Lecture 10. 图像压缩/Image Compression(2 学时)
编码冗余;保真度准则;图像格式;基本的图像压缩方法
Coding Redundancy; Fidelity Criteria; Image Compression Models; Image Formats; Basic Compression Methods;
Lecture 11. 显微图像复原/Microscopic image restoration(2 学时)
显微图像成像原理; 点扩散函数;去卷积
Microscopic image formation; Point Spread Function; Deconvolution
Lecture 12. 深度学习/Deep Learning(3 学时)
人工神经网络;正向传播;梯度递减;代价函数;反向传播
Artificial Neural Network; Forward Propagation; Gradient Descent; Loss Function; Backward propagation
Lecture 13. 报告/Presentation (2 学时)