2
11.
授课方式
Delivery Method
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
Other(Please specify)
总学时
Total
学时数
Credit Hours
48 48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
MA102B、MA107A;MA212
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
无
14.
其它要求修读本课程的学系
Cross-listing Dept.
无
教学大纲及教学日历 SYLLABUS
15. 教学目标 Course Objectives
本课程的教学目标是:使学生理解机器学习中大量的学习算法,理解如何评估学习算法优缺点和如何挑选模型,并能够对
常用的机器学习算法进行编程。机器学习方面主要包括了线性模型、支持向量机、核方法、人工神经网络、聚类和降维等
主题。此外,本课程还将详细介绍机器学习在医学图像分割、配准、预测、分类等方面的应用,锻炼学生运用机器学习解
决医学实际问题的能力,并以小组的形式完成一次课课题研究。
The goal of this course is understanding a large number of learning algorithms in machine learning and knowing how to
evaluate the learning algorithm and how to select models. Implementing in code common machine learning algorithms.
Machine learning mainly includes linear model, support vector machine, kernel method, artificial neural network,
clustering and dimension reduction, etc. topics. In addition, this course will also introduce the application of machine
learning in medical image segmentation, registration, prediction, classification, etc. fields. Training students' ability to
solve practical medical problems by machine learning. Students will complete a course research in the form of a group.
16.
预达学习成果 Learning Outcomes
通过学习,本课程预达下列学习成果:
1. 对机器学习有基础的认识
2. 掌握常用的机器学习算法
3. 了解机器学习在医学各个方面的应用
4. 以小组的形式,研究一个具体的医学应用问题,阅读相关研究文献,尝试使用机器学习方法对相关问题进行解
决。在课程上完成小组汇报,展示研究成果。
After one semester of course study, we plan to achieve the following goal:
1. Have a basic understanding of machine learning
2. Master commonly used machine learning algorithms
3. Knowing applications of machine learning in medicine
4. In the form of group, study a specific medical application problem, read related research literatures, and try to
use machine learning methods to solve this problem. Show the group research results and complete the