3.3 功能分析与进化分析软件
3.4 实操 2:包括 newick 格式介绍
3.5 常用生物数据库:核酸、蛋白、通路、变异、疾病、肿瘤、物种
3.6 实操 3:GenBank、KEGG、GO、dbSNP、OMIM、TCGA
3.Introduction to common software and database (3+3, software 2+ database 1+ practical operation 3), including
common file format (WANG Chongzhi)
3.1 sequence assembly, comparison and related software
3.2 operation 1: introduction of fasta, fastq, bam and VCF formats
3.3 functional analysis and evolutionary analysis softwares
3.4 operation 2: introduction of newick format
3.5 commonly used biological databases: nucleic acid, protein, pathway, mutation, disease, tumor, species
3.6 operation 3: GenBank, KEGG, GO, dbSNP, OMIM, TCGA
4.生信常用算法:常用算法介绍,通过对软件数据调整加深对算法的理解,如何针对实际应用优化参数选择;比对:
blast/soap/soap2; 算法原理、关键参数、如何优化、如何评价(王崇志)
4.1 生物问题与数学建模:同源与相似,种化与癌变,模式发现
4.2 问题求解与算法实现:分而治之、动态规划、马尔科夫模型
4.3 序列比对原理与关键参数 I:blast
4.4 序列比对原理与关键参数 II:SOAPaligner、bwa
4.5 建树与聚类算法
4.6 motif 识别算法
4. Common bioinformatics algorithms: introduction of common algorithms, to deepen the understanding of the algorithms
through the adjustment of softwares, how to optimize parameters Alignment: blast/soap/soap2; Algorithm principle, key
parameters, how to optimize, how to evaluate (WANG Chongzhi)
4.1 biological problems and mathematical modeling: homology and similarity, speciation and canceration, pattern
discovery
4.2 problem solving and algorithm implementation: divide and conquer, dynamic programming, markov model
4.3 sequence alignment principle and key parameters I: blast
4.4 alignment principle and key parameters II: SOAPaligner, bwa
4.5 tree building and clustering algorithm
4.6 motif recognition algorithm