1
课程详述
COURSE SPECIFICATION
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
系统生物学 Systems Biology
2.
授课院系
Originating Department
生物系 Department of Biology
3.
课程编号
Course Code
BIO304
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业核心课 (生物信息专业)
Major Core Courses (Bioinformatics Major)
专业选修课 (生物科学、生物技术专业、生物医学工程专业)
Major Elective Courses (BioscienceBiotechnologyBiomedical Engineering Majors)
6.
授课学期
Semester
春季 Spring / 秋季 Fall
7.
授课语言
Teaching Language
英文 English / 中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
生物系 Department of Biology
Dr. 黄巍 (Huang Wei), huangw@sustc.edu.cn
生物医学工程系 Department of Biomedical Engineering
Dr. 何俊龙(HE Junlonghejl@sustc.edu.cn
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
Pre-requisites(先BIO102A General Biology MA212
统计 Probability and Statistics
BIO206-15 Cell BiologyDept.BIO
MA206 Mathematical ModelingDept.MATHPHY203-15
学物 Mathematical Methods in Physics系学, Dept.PHYBMEB311
量生理学 I Quantitative Physiology I(生物医学工程系学生,Dept.BMEB))
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
系统生物学是一门专业必修课,旨在帮助学生深入理解生物研究中的系统化研究思维、研究课题及方法的科学背景,学习
科学研究的严谨方法,激励其科学好奇心和勇气,并培养学生热爱自然、关爱社会、珍视生命的情操,提高生命科学知识
素养而开设的综合性素质教育必修课程
Systems biology is a subject-foundation course. It is designed to help students understand systematic thinking of
biological researchesscientific backgrounds of research topics andmethodology. It is to train their vigorous research
methods, inspire their scientific curiosity and courage. It is also to help them establish general scientific characters, such
as loving nature, devoting to society, respective to life.
16.
预达学习成果 Learning Outcomes
本课程完成后,学生将能够:
1)培养对生物问题的系统化认知的视角
2)培养对系统生物学一些经典课题的科学背景,生物问题和系统生物学的理论和实验方法的了解。
3)掌握一定的系统生物学数学模拟的能力。
4)培养对生命科学及其交叉学科的兴趣,提高未来与其它学科的人士交流合作的能力。
With the completion of this course, the students will
1develop systematic thinking of biological questions;
2 develop the understanding of the theoretical and experimental approaches for classic systems biology topics,
including backgrounds and biological questions;
3obtain capability of basic systems biology mathematic and computational modelings;
4 develop their interests in biological science and related interdisciplinary sciences, improve their capability of
collaboration with scientists of other disciplines.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
Part 1: Single reaction: 8 hours
第一部分:单一反应:8 学时
Outline (Requirement)
主要内容(教学要求):
1.1.Introduction to systems biology; Basic biology crash courseMichaelis-Menten kineticsMatlab tutorial;
2.1. 系统生物学简介;生物系基本过程的回顾;米氏动力学;Matlab 简要教程
3. 1.1 The fundamental thinking in systems biology: Aristotle’s “four causes”, Sullivan’s rule (familiar with)
4. 1.1 系统生物学的关键思想:亚里士多德的四因论,Sullivan 原则
5. 1.2 Emerging and re-emerging of systems biology: Lac Operon, Phenotype vs function, reverse engineering (familiar
with)
6. 1.2 系统生物学的出现和重新出现:Lac Operon,显性性状与功能
7. 1.3 Major themes in systems biology (understand)
8. 1.3 系统生物学的主要研究方向
9. 1.4 Brief review of central dogma, gene regulations (understand)
10. 1.4 中心法则,基因调控的简要回顾
11. 1.5 Review of Michaelis-Menten kinetics for single reactions: pseudo-steady state approximation (understand)
12. 1.5 回顾单一反应的米氏动力学:准稳态近似
13. 1.6 Tutorial on Matlab (familiar with)
14. 1.6 Matlab 简要教程
15.2. Equilibrium binding, cooperativity and ultrasensitivity:
16.2. 平衡结合,协同效应和超灵敏性
17. 2.1 Dynamic simulation of Michaelis-Menten kinetics (understand)
18. 2.1 米氏动力学的模拟
19. 2.2 Derivation of equilibrium binding (familiar with)
20. 2.2 平衡结合的推导
21. 2.3 Cooperativity and ultrasensitivity: theory, biological examples and functions (familiar with)
22. 2.3 协同效应和超敏感性,理论,生物学例子与功能
23. 2.4 Students share work-in-progress of the first course project
4
24. 2.4 学生交流第一个课堂项目的进展
Key and difficulty: Derivation and simulation of dynamic equations for single biological reactions based on simple mass
action law and equilibrium binding.
重点、难点:基于质量作用定理和平衡结合,推导和模拟单一反应的动态方程
Appendix: Combined with course project, in-depth understanding of the reaction models and their biological relevance.
其它教学环节:结合课程项目,深刻理解反应模型及其生物学相关性
Part 2: Simple network, complex function: 12 hours
第二部分:简单网络,复杂功能:12 学时
Outline (Requirement)
主要内容(教学要求):
3.3.Positive feedback and multistability, stability analysis, computer simulation session,
4.3. 正反馈和多稳态,稳定性分析,计算机模拟
5. 3.1 Life cycle of phage and Ptashne’s “Genetic Switch” (understand)
6. 3.1 phage 的生命周期和 Ptashne 所谓的基因开关(理解)
7. 3.2 From gene regulations to individual reactions, Hasty’s approximations (understand)
8. 3.2 从基因调控到单个反应:Hasty 的近似 (理解)
9. 3.3 Derivation and simplification of the mathematic model (familiar with)
10. 3.3 相应数学模型的推导与简化 (熟悉)
11. 3.4 Matlab simulations (codes provided), understand stability analysis and hysteresis (understand)
12. 3.4 Matlab 模拟(教师提供程序),理解稳定性和弛豫过程 (理解)
13. 3.5 Experimental verification of the model (familiar with)
14. 3.5 模型的实验验证 (熟悉)
15. 3.6 Other biological questions related to positive feedback and multistability (familiar with)
16. 3.6 与正反馈、多稳态相关的其它生物问题 (熟悉)
17.4. Synthetic switches, more complex network with bistability
18.4. 合成生物学构建的开关,基于双稳态的更复杂网络
19. 4.1 Construction of genetic toggle switch, the beginning of synthetic biology (understand)
20. 4.1 构建基因拨动开关,合成生物学的起点 (理解)
5
21. 4.2 Logic analysis of the genetic toggle switch(understand)
22. 4.2 基因拨动开关的逻辑分析 (理解)
23. 4.3 The individual reactions constituting genetic toggle switch (understand)
24. 4.3 构成基因拨动开关的单个反应 (理解)
25. 4.4 Derivation and simplification of the mathematic model (familiar with)
26. 4.4 推导和简化数学模型 (了解)
27. 4.5 Graphic representations of nullcline and stability analysis (familiar with)
28. 4.5 Nullcline 和稳定性分析的图形表征 (了解)
29. 4.6 Using Matlab simulation (code provided) to understand stable fix points, unstable fix points, stability (familiar with)
30. 4.6 用课堂提供的 Matlab 程序模拟理解稳定和不稳定不动点。(了解)
31. 4.7 The simulations unveil that key for toggle switch: external signals control the bistability (understand)
32. 4.7 Matlab 模拟有助于理解拨动开关的关键点:外部信号控制双稳态 (理解)
33. 4.8 Analytic stability analysis (not required)
34. 4.8 解析稳定性分析 (不要求)
35.5.Biological oscillators
36.5 生物振荡器
37. 5.1 Importance of biological oscillator (understand)
38. 5.1 生物振荡器的重要性 (理解)
39. 5.2 Example of biological oscillator, including circadian rhythm (familiar with)
40. 5.2 生物振荡器的范例,含昼夜节律 (了解)
41. 5.3 Stability analysis of oscillation (not required)
42. 5.3 振动的稳定性分析 (不要求)
43. 5.4 Toy model of biological oscillator (familiar with)
44. 5.4 生物振荡器的玩具模型 (了解)
45. 5.5 Essential requirements for biological oscillators (familiar with)
46. 5.5 生物振荡器的基本因素 (了解)
47. 5.6 The origins of time-delay and nonlinearity (understand)
48. 5.6 时间延迟和非线性的起源 (理解)
6
49. 5.7 Classifications of network motifs for oscillations (familiar with)
50. 5.7 振荡器的网络基元分类 (了解)
51.6. student presentations:
52.6.学生报告
53. 6.1 Case studies for most recent studies of biological oscillator;
54. 6.1 最近生物振荡器的案例分析
55. 6.2 Course project for induced gene expression systems
56. 6.2 关于诱导基因表达系统的课程项目
Key and difficulty: Able to deduce individual reactions from more complex network of gene regulations , enzymatic
reactions etc, familiar with how mathematic model of complex network can be established through mass action
equations of individual reactions.
重点、难点:学会从更加复杂的基因调控或者酶反应等网络中提取出一个个的单一反应,了解如何从单个反应的质量作用
方程建立复杂网络数学模型的过程。
Appendix: Combined with course project, hand-on understanding of the stability, bistability and oscillation; combined with
student presentation session, establishing the sense that simple oscillation controlling many physiological processes in
cell.
其它教学环节:结合课程项目,掌握第一手的稳定性、双稳态及振动的特性;结合学生报告环节,建立简单生物振动控制
很多细胞内生理过程的观念。
Part 3: Small network, high performance: 8 hours
第三部分:小网络,高性能:8 学时
Outline (Requirement)
主要内容(教学要求):
7.7.Bacteria chemotaxis, behaviour, components, network, performance,
8.7.细菌化学趋向性,行为、原件、网络和性能
9. 7.1 Definition and example of chemotaxis (understand)
10. 7.1 化学趋向性的定义和例子 (理解)
11. 7.2 Phenomena and molecular mechanisms of Bacteria motility and chemotaxis (understand)
12. 7.2 细菌运动、化学趋向性的现象与分子机制 (理解)
13. 7.3 Excitation and adaptation: two processes critical for bacteria chemotaxis (understand)
14. 7.3 兴奋和适应性:细菌化学趋向性的两个关键过程 (理解)
7
15. 7.4 Direct experimental validation of adaptation (familiar with)
16. 7.4 适应性的直接实验验证 (了解)
17. 7.5 Network motif, not parameters, critical for high performance of bacteria chemotaxis (familiar with)
18. 7.5 网络基元是细菌化学趋向性高性能的关键 (了解)。
19.8.Diffusion, Fick’s laws, and individual and population models
20.8.扩散、菲克定律,个体与群体模型
21. 8.1 Population level: Fick’s laws for diffusion (familiar with)
22. 8.1 群体模型:费克扩散定律 (了解)
23. 8.2 Individual particles: from Random walk to diffusion (familiar with)
24. 8.2 个体模型:从随机行走到扩散 (了解)
25. 8.3 diffusion coefficients for biological molecules (familiar with)
26. 8.3 不同生物大分子的扩散系数 (了解)
27. 8.4 Langevin equation representation for individual particle: random walk and drift (not required)
28. 8.4.个体模型的朗之万方程:随机行走和漂移 (不要求)
29. 8.5 Fokker-Planck equation representation for population: diffusion and chemotaxis (not required)
30. 8.5 群体模型的福克-普朗克方程:扩散和化学趋向性 (不要求)
31.9. Course project explanation, student sharing progress report
32.9.课程项目要求讲解,学生分享进展情况
Key and difficulty: Grasp the concept of perform requirement for chemotaxis, how it was realized in real life using
bacteria as example.
重点、难点:理解化学趋向性性能要求的概念,用细菌做例子理解其性能要求细菌如何实现的
Appendix: Combined with course project, hand-on understanding of the properties of random walk and chemotaxis, able
to compare experimental measured data with simulation to draw conclusion; hand-on experience with tracking individual
cells in a microscopic movie.
其它教学环节:结合课程项目,得到对随机行走与化学趋向性的第一手理解,学习根据比较实验测量数据和数值模拟得到
结论的能力,学习在显微镜视频文件中跟踪单个细胞的第一手经验。
Part 4: larger network, less details: 8 hours
第四部分:大网络,少细节:8 学时
Outline (Requirement)
8
主要内容(教学要求):
33.10. Research of gene regulation networks: painstaking experiment-based networks vs large scale data-based
networks,
34.研究基因调控网络的两种方式:非常细致的基于实验的网络模型 及基于大数据的网络模型
35. 10.1 Brief review of sea urchin development and fatemap (familiar with)
36. 10.1 海胆发育和命运图谱的简介 (了解)
37. 10.2 Eric Davidson’s Odyssey: reverse engineering the cis-regulatory regulatory functions on endo16 gene during
early sea urchin development (familiar with)
38. 10.2 Eric Davidson 的历程:逆工程早期海胆发育中 endo16 基因条例的顺面调控函数 (了解)
39. 10.3 Eric Davidson’s Odyssey: reverse engineering the cis-regulatory regulatory network control cell fates during
early sea urchin development (familiar with)
40. 10.3 Eric Davidson 的历程:逆工程控制早期海胆发育的顺面基因调控网络(了解)
41. 10.4 Network biology: extract only the topology of complex regulatory network (familiar with)
42. 10.4 网络生物学:只提取复杂调控网络的拓扑信息 (了解)
43. 10.5 Integrated data from interactome, transcriptome, phenotypic profiling network etc to form large network (familiar
with)
44. 10.5 整合 interactome, transcriptome, phenotypic profiling network 等的数据,构建大网络模型 (了解)
45.11. Network modeling and experimental design, differential equation-based studies
46.11. 基于微分方程的网络模型和实验设计
47. 11.1 extrinsic apoptosis network (familiar with)
48. 11.1 外源细胞凋亡网络 (了解)
49. 11.2 simplified reaction models and single cell reporters at different stages (familiar with)
50. 11.2 简化的反应模型和分阶段的单细胞细胞凋亡探针 (了解)
51. 11.3 Derivation of the entire ODE model with guesstimated parameters (not required)
52. 11.3 用推测和猜测的参数集推导整个常微分方程组模型 (不要求)
53. 11.4 Observation of novel single cell-based apoptotic dynamics (familiar with)
54. 11.4 观察基于单细胞的细胞凋亡动力学现象 (了解)
55. 11.5 The training of the ODE model with experimental data (not required)
56. 11.5 用实验数据训练常微分方程模型 (不要求)
57. 11.6 Model predictions validated by experiments (familiar with)
9
58. 11.6 模型预言的实验验证 (了解)
59.12. Network modeling and experimental design, infer network from large scale data
60.12. 网络模型与实验设计:基于大数据的网络推断
61. 12.1 The challenge for inferring transcriptional regulatory network (understand)
62. 12.1 推断基因调控网络的挑战性 (理解)
63. 12.2 Generate diverse dataset of E coli transcriptome with diverse chemical and genetic perturbations. (familiar with)
64. 12.2 用化学及基因扰动的细菌,获取大量且多样性的数据集 (了解)
65. 12.3 Comparing statistic methods for inferring entire network (familiar with)
66. 12.3 对比不同统计方法推断整个网络的效果 (了解)
67. 12.4 Identify novel interactions from the inferred network. (familiar with)
68. 12.4 实验验证从推断出的网络预言的新颖相互作用 (了解)
Key and difficulty: Grasp the conflict between the scope of the network and the detail and predictability of the network
model.
重点、难点:领会在网络模型中,网络完整性与细节、可预测性的矛盾
Part 5: Spatial interactions and pattern models: 8 hours
第五部分:空间相互作用和图式模型: 8 学时
Outline (Requirement)
主要内容(教学要求):
69.13.Turing’s pattern formation model, computer simulation session,
70.13 图灵图式形成模型:计算机模拟
71. 13.1 The original Turing model (familiar with)
72. 13.1 原始的图灵模型 (了解)
73. 13.2 Stability analysis of Turing Model (not required)
74. 13.2 图灵模型的稳定性分析(不要求)
75. 13.3 Intuitive understanding of Turing patterning (familiar with)
76. 13.3 图灵图式的直观理解 (了解)
77. 13.4 Phenomena of Turing pattering: comparing experiments with simulation (Matlab code provided) (familiar with)
78. 13.4 图灵图式的现象:对比实验和模拟 (用课程提供的 matlab 程序) (了解)
10
79.14.Recent experimental evidences of Turing’s model
80.14 最近图灵模型的实验证据
81. 14.1 The key criterial for Turing pattern (understand)
82. 14.1 图灵图式的关键因素 (理解)
83. 14.2 The first direct experimental validation of Turing pattern criterial: zebra fish embryo patterning: Experimental
design and results (understand)
84. 14.2 第一个直接验证图灵图式关键因素的实验:斑马鱼胚胎图式,实验设计和结果 (理解)
85. 14.3 Experimental evidence of Turing pattern in mouse digits: quantitative tuning of digit number (familiar with)
86. 14.3 小鼠指头的图灵模型的实验证据:定量条件指头数 (了解)
87.15.Theory and experimental evidences of morphogen gradient
88.15. Morphogen 梯度模型的理论与实验证据
89. 15.1 French flag and morphogen gradient model (understand)
90. 15.1 法国国旗和 morphogen 梯度模型 (理解)
91. 15.2 Noise filtering in Drosophila segamentation familiar
92. 15.2 果蝇 segamentation 的噪声过滤 (了解)
93. 15.3 Scaling in Xenopus dorsal ventral patterning familiar
94. 15.3 爪蛙腹-背图案的定标性 (了解)
95.16. Engineering to understand pattern formation rules
96.16. 通过工程学方法理解图式形成的原则
97. 16.1 Reverse engineering to understand the “FOR” clause of SHH-PTCH signal network (familiar with)
98. 16.1 通过逆工程理解 SHH-PTCH 网络的‘FOR’ (了解)
99. 16.2 Forward engineering to study novel pattern formation principle (familiar with)
16.2 通过正向工程研究新颖的图式形成原则(了解)
Key and difficulty: Understand the quantitative properties of Turning model and Morphogen gradient model.
关键点、难点:理解图灵模型和 morphogen 梯度模型的定量特征
Part 6: Growth and differentiate, noise and robustness: 2 hours
第六部分:生长与分化,噪声与鲁棒性:4 学时
Outline (Requirement)
11
主要内容(教学要求):
17. Cell lineage, feedback and control
17. 细胞谱系,反馈和控制
17.1 The “FOR” clause in growth tissue: performance objectives and mechanisms (familiar with)
17.1 组织生长的‘FOR‘因:性能要求和机制 (了解)
17.2 Case study: IL-2 regulates CD4+ T cell homeostasis in vitro (familiar with)
17.2 案例分析:IL-2 在体外调控 CD4+ T 细胞数量恒定 (了解)
18. Students sharing their ideas and reasons for their final report
18 学生分享期末报告的想法和缘由
Key and difficulty: Understanding Controlling the size of growth tissue requires experimental evidences which is largely
nonexistent. All the current consensus mechanisms cannot explain it.
重点与难点:理解控制生长组织的尺寸需要关键的目前缺乏的实验数据。所有目前公认的机制无法解释这个过程。
18.
教材及其它参考资料 Textbook and Supplementary Readings
无教材,No textbook
参考资料为大量英文科学文献,每次课的参考资料都不一样,由授课老师提供
There supplementary readings are large number of scientific publications in English. It is different for each lecture and
will be provided by the teacher.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
20
出勤及课堂讨论的参加性
Attendancy and involvement in
course discussion
小测验
Quiz
课程项目 Projects
平时作业
Assignments
40
文献讨论和课程小研究项目
Journal Club and course projects
期中考试
Mid-Term Test
期末考试
Final Exam
期末报告
Final
Presentation
12
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
40
期末提交论文一篇,
Final examwrite a review article of
the systems biology topic, student’s
choice.
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority
本课程经生物系本科教学指导委员会审议通过。
This Course has been approved by Undergraduate Teaching Steering Committee of Department of Biology.