

课程详述

COURSE SPECIFICATION

以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联 系授课教师。

The course information as follows may be subject to change, either during the session because of unforeseen circumstances, or following review of the course at the end of the session. Queries about the course should be directed to the course instructor.

1.	课程名称 Course Title	增材制造与设计 Additive Manufacturing and Design			
2.	授课院系 Originating Department	机械与能源工程系 Department of Mechanical and Energy Engineering			
3.	课程编号 Course Code	ME462			
4.	课程学分 Credit Value	3			
5.	课程类别 Course Type	专业选修课 Major Elective Courses			
6.	授课学期 Semester	秋季 Fall			
7.	授课语言 Teaching Language	中英双语 English & Chinese			
8.	授课教师、所属学系、联系方 式(如属团队授课,请列明其 他授课教师)	机械与能源工程系			
ο.	Instructor(s), Affiliation& Contact (For team teaching, please list all instructors)	baijm@sustech.edu.cn Jiaming Bai Department of Mechanical and Energy Engineering			
9.	实验员/助教、所属学系、联系 方式 Tutor/TA(s), Contact	待公布 To be announced			
10.	选课人数限额(可不填) Maximum Enrolment (Optional)	t			

11.	授课方式 Delivery Method	讲授 Lectures		实验/实习 Lab/Practical	其它(请具体注明) Other(Please specify)	总学时 Total
	学时数	48				48
	Credit Hours					
12.	先修课程、其它学习要求 Pre-requisites or Other Academic Requirements	ME302机械制造基础 Fundamentals of Manufacturing				
13.	后续课程、其它学习规划 Courses for which this course is a pre-requisite					
14.	其它要求修读本课程的学系 Cross-listing Dept.					
	教学大纲及教学日历 SYLLABUS					

15. 教学目标 Course Objectives

介绍增材制造及设计的概念及相关技术,教学目标主要包括:

- 1. 各种增材制造标准工艺的基础和前沿发展,及增材制造在各工业领域的应用和案例研究:汽车,航空航天,医疗,消费品等。
- 2. 增材制造的设计理念,技术和分析方法,包括拓扑优化设计及仿真模拟的应用。
- 3. 课程完成后,学生能够充分了解及应用最前沿的增材制造技术,材料选择,设计和优化及其应用领域。

This module will introduce and develop the concepts and techniques for Additive Manufacturing. The module will emphasise on:

- 1. The fundamentals and cutting-edge development of the various ASTM Additive Manufacturing technologies and will highlight applications and case studies from the Additive Manufacturing industries in the following areas: Automotive, Aerospace, Medical, Consumer goods, etc.
- 2. The advanced design concepts, techniques and analysis methodologies like design topology optimisation and simulation on their design prior to additive manufacturing.
- 3. Upon completion, participants should be able to apply the execution of concept and skills acquired in the areas of Additive Manufacturing, material selection, design and optimisation and their applications.

16. 预达学习成果 Learning Outcomes

本课程介绍各种增材制造标准工艺的基础和前沿发展,讲解增材制造的设计理念,技术和分析方法,让学生能够充分了解 及应用最前沿的增材制造技术,材料选择,设计和优化及其应用领域,同时培养学生能够熟悉问题定义、科学研究、分工 协作等能力。

The fundamentals and cutting-edge development of the various ASTM Additive Manufacturing technologies and will highlight applications and case studies from the Additive Manufacturing industries. The advanced design concepts, techniques and analysis methodologies like design topology optimisation and simulation on their design prior to additive manufacturing. Upon completion, participants should be able to apply the execution of concept and skills acquired in the areas of Additive Manufacturing, material selection, design and optimisation and their applications.

17.

Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if this is a team teaching or module course.)

^{7.} 课程内容及教学日历(如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明 主讲人)

课程内容	教学要求	学时分配
 增材制造概括 Overview of Additive Manufacturing What is additive manufacturing Why use the term additive manufacturing The benefits of AM Current trends and implications of AM Distinction between AM and CNC machining Generalized AM process chain Industry impact and applications 	 Understand the definition of AM. Understand the current trends and implications of AM. Understand the industry impact and applications of AM. 	2
增材制造标准工艺 (1) ASTM AM Processes (I) - Vat photo-polymerization - Photopolymerisation materials; - Optics; - Machine Hardware; - Applications - Powder bed fusion process - Materials - Powder Fusion Mechanisms - Process parameters and Modelling - Applications	 Understand the background of stereolithography and selective laser sintering. Understand the process and application of stereolithography and selective laser sintering. 	4
增材制造标准工艺(II)ASTM AM Processes (II) - Materials Extrusion - Basic principles - Hardware - Materials - Other materials extrusion technologies - Materials jetting - Continuous and drop-on-demand jetting - Thermal and piezoelectric actuation - Jetting materials	 Understand the background of materials extrusion and materials jetting. Understand the type of materials of materials extrusion and materials jetting. Understand the other materials extrusion technologies. Understand the continuous and drop-on-demand jetting methods. 	4
增材制造标准工艺 (III) ASTM AM Process (III) - Binder jetting • Working principles • Materials • Process benefits and drawbacks - Directed energy deposition • DED process description • Material delivery systems	 Understand the process of Binder Jetting. Understand the importance of the infiltration step in the Binder Jetting process. Know the different beam energy sources and feedstock types. Know the advantages and disadvantages of the direct energy deposition process. 	6

Typical materials and microstructure Sheet lamination processes Background and working principal Laminated object manufacture Ultrasonic additive manufacturing	 Understand the applications for the direct energy deposition process. Understand the process of laminated object manufacture and ultrasonic additive manufacturing. 	
增材制造的数据处理链 Data processing chain in AM - Data processing chain - STL files - Build Orientation - Support structures	 Understand the Data processing chain in 3D printing. Understand the issues need to be aware of during the modeling process. 	2
增材制造设计 Design for Additive Manufacturing - The fundamental of hardware assembly design - Dimensional accuracy of AM parts - Designing enclosures - Common design features	 Understand the fundamental of hardware assembly design. Understand the common design features. 	4
 3D 扫描技术 3D Scanning 3D scanning process overview Scanning process Scan data preparation Scan data to CAD data Non-contact, contact and volumetric scanning techniques 3D scanning Applications 	 Understand the technical principle of 3D Scanning. Understand the Non-contact, contact and volumetric scanning techniques. 	2
 逆向工程 Reverse Engineering The fundamental of reverse engineering Why RE The applications of reverse engineering RE with 3D printing – Case study Reverse modelling strategies Geomagics Design X 	 Understand the fundamental of reverse engineering. Understand the applications of reverse engineering. 	4

	1			
虚拟设计与仿真模拟 Virtual design and				
simulation concept				
- Unique capabilities of AM				
- Shape/functional/material complexity	- Understand the shape/functional/material			
- Generative design	complexity.	2		
- Topology optimisation	- Understand the application of virtual design and			
- Lattice optimisation	simulation concept in additive manufacturing.			
- Cellular structure				
- End-to-end design process for AM				
增材制造过程模拟及预测 AM process				
simulation and prediction				
- Challenges of current AM	- Understand the Challenges of current AM.			
- Reasons for AM process simulation		4		
Process simulation and validation	 Understand the methods of process simulation and validation. 			
- AM process advantages				
- Case study				
知识产权及标准 AM IP and Standards	- Understand the definition of intellectual			
- Intellectual property	property.	2		
- The trend of AM patents	- Understand the importance of intellectual			
- ISO and ASTM standards for AM	property.			
│ │ 增材制造商业模式及成本 Costing and	IN ^{NORS}			
Business Models for AM	and a great			
- AM cost Drivers	- Understand the cost comparison of different			
- Cost comparison of different	manufacturing methods.	2		
manufacturing methods	- Understand the drivers and model of AM cost.			
- AM cost model				
快速模具制造 Rapid Tooling				
- Direct AM production of injection				
moulding inserts	- Understand the AM for rapid tooling.	2		
- Investment casting				
- Typical applications	د آ			
医疗领域的增材制造 AM for Medical				
- The use of AM to support medical				
applications	Independent the trained Abo 1999 C			
- Software support for medical	- Understand the typical AM applications for			
applications	medical.	2		
- Limitations of AM for medical	- Understand the further development of AM for			
applications	medical.			
- Further development of medical AM				
applications				
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	- Understand the aerospace, automotive	2		
industrial aspects of AM.				
	-			

-	AM for aerospace application			
-	AM for automotive application			
-	AM for archaeological application			
增林	才制造实验 AM Experiments			
-	Experiments of fused deposition			
	modelling	- Ability to work with team members or to	4	
-	Experiments of stereolithography	complete experiments individually.		
-	Experiments of binder jetting			
Lec	Lectures slots could be swapped around			
* Po	ossible invited lecturer			

18.

教材及其它参考资料 Textbook and Supplementary Readings

- Gibson, Ian, Rosen, David, Stucker, Brent, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, ISBN 978-1-4939-2113-3
- Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing : Principles and Applications, World Scientific Publishing Company, ISBN-10: 9814571407.
- Tom Page, Design for Additive Manufacturing: Guidelines for cost effective manufacturing, ISBN-10 384732294X
- Ulrich, K.T., Eppinger, S.D., Product Design and Development, 4th Edition, McGraw Hill, 2008

			课程评估 ASSESSM	IENT	North State
19.	评估形式	评估时间	占考试总成绩百分比	01	备注
	Type of	Time	% of final		Votes
	Assessment	(score	5° 60° 6	
	出勤 Attendance		10	ON ACT	
	课堂表现				
	Class				
	Performance				
	小测验				
	Quiz				
	课程项目 Projects				
	平时作业		70		
	Assignments				
	期中考试	N			
	Mid-Term Test		AND.		
	期末考试				
	Final Exam				
	期末报告		20		
	Final				
	Presentation				
	其它(可根据需要				
	改写以上评估方				
	式)				
	Others (The				
	above may be				
	modified as				
	necessary)				

20. 记分方式 GRADING SYSTEM

☑ A. 十三级等级制 Letter Grading □ B. 二级记分制(通过/不通过) Pass/Fail Grading

课程审批 REVIEW AND APPROVAL

21. 本课程设置已经过以下责任人/委员会审议通过

This Course has been approved by the following person or committee of authority

机械与能源工程系教学委员会

