课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	植物分子生物学和基因组学前沿 Advanced Studies in Plant Molecular Biology and Genomics
2.	课程性质 Compulsory/Elective	选修课 Elective
3.	课程学分/学时 Course Credit/Hours	2 学分 2 points/32 hours
4.	授课语言 Teaching Language	中英文 Chinese and English
5.	授课教师 Instructor(s)	翟继先 Jixian Zhai
6.	先修要求 Pre-requisites	《普通生物学》 General Biology

7. 教学目标 Course Objectives

Plant Molecular Biology and Genomics is a course is about genes - their structure and function- at the molecular level. The objective is to give you a firm and rigorous foundation in understanding gene expression and its regulation. We will begin with a review of structure of protein and nucleic acid, and the physical and chemical properties that drive interactions of protein with nucleic acid. Then we will study methods and technologies applied to study genes. Next, we will study the molecular mechanics of DNA replication, DNA damage repair, transcription in both prokaryotic and eukaryotic organisms, with an emphasis on how the activity of genes is regulated at the molecular level through nucleic acid-protein interactions. Lastly, genomics and systems biology will also be introduced and we will review advances in genomics projects that are altering our understanding of molecular biology.

8. 教学方法 Teaching Methods

1. Lectures by Professor

2. Group Discussion

The teacher instructs students to give their own opinions about the issue, and make them to communicate and learn. Through discussion, students will help each other and learn from each other, deepen their knowledge, understanding and gain more new knowledge. Besides, their autonomy will also be encouraged in order to solve problems together.

9. 教学内容 Course Contents

Section 1	i. Course Introduction
	ii. A brief history
	iii. Hot topics in molecular biology
	iv. Protein structure
	v. DNA structure and topology
	vi. Chromosome structure and its effects on DNA metabolism
	vii. Protein-DNA interaction
Section 2	i. Cloning
	ii. Working with genes
	iii. Understanding the function of genes
	iv. DNA Replication
Section 3	i. DNA mutation and repair
	ii. Recombinational DNA Repair and Homologous Recombination
	iii. Site-specific recombination and transposition
	iv. Tools for genome editing

		v. DNA-dependent RNA synthesisvi. mRNA processing	
		vii. mRNA transport	
	Section 4	i. The genetic code	
		ii. Protein synthesis	
		111. Regulation the flow of information	
		iv. The transcriptional regulation of gene expression in eukaryotic organisms	
		v. The posttranslational regulation of gene expression in eukaryotic organisms	
		vi. Gene Regulation in Development and Evolution	
	Section 5	Genomes, Transcriptomes, Proteomics, and systems biology	
	Section 6	The future of molecular biology and Genomics	
10.	课程考核 Course Assessment		
	Attendance (10 poi	ndance (10 points), Presentation (60 points), Report (30 points),	
11.	教材及其它参考资料 Textbook and Supplementary Readings		
	Online text book – Arabidopsis Book, free download.		