Department of Electrical and Electronic Engineering

Program of Information Engineering for International Students

(2024)

I. Introduction

Information Engineering is a new and promising discipline. It is developed as multiple areas

involving signal and information processing technology, communication technology, and

computer science rapidly penetrate into traditional information technology (IT) industries. In

China, information technology industry is currently the most active and fast-growing profession.

This area is deeply involved in international technology competition now, and has also globally

become the most vital engine of social and economic productivity and development. Recently,

with the increasing demand on the eco-friendly, integrated, and smart information system,

professional talents in information engineering are deeply in need.

Academic subject areas: Electronic Information

Program code: 080706

II. Objectives and Learning Outcomes

1. Objectives

Attributes that alumni of Information Engineering should demonstrate 3-5 years after

graduation include 4 aspects. Alumni are:

Technical Skills: technically competent to conduct research and development in the industry

and universities in the broad fields of Electronics and Information Engineering in general, and

Communication Engineering in particular.

Engineering Ethos: able to think critically and creatively, able to use engineering principles

to embrace challenging engineering and non-engineering problems encountered at work, able to

apply an analytic mindset, make informed decisions and able to provide innovative solutions.

Attitude: self-motivated with a desire for lifelong learning to adapt to the fast changing

environment, able to operate with integrity and responsibility, having optimism and composure

1

under tight schedule, and committed to make a positive impact on society locally and globally.

Leadership: effective communicators, well-prepared to advance towards leadership positions, able to capitalize the individual strengths of team members, and able to nurture the team to achieve goals.

2. Learning Outcomes

Student Outcomes (SOs) that prepare graduates to enter the professional practice of engineering:

- SO 1: an ability to identify, formulate, and solve complex engineering problems 1 by applying principles of engineering, science, and mathematics.
- SO 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
 - SO 3: an ability to communicate effectively with a range of audiences.
- SO 4: an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- SO 5: an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- SO 6: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- SO 7: an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- SO 8: knowledge of probability and statistics including applications, differential and integral calculus, sciences, engineering sciences and computing science and application to analyze and design complex information engineering systems.
- SO 9: knowledge and application of advanced mathematics, such as differential equations, linear algebra, and complex variable.
 - SO 10: knowledge and application of information processing methods.

III. Study Length, Degree, and Graduation Requirements

- 1. Study length: 4 years.
- 2. Degree conferred: Students who complete and meet the degree requirements of the undergraduate program will be awarded a bachelor's degree in Engineering
- 3. The minimum credit requirement for graduation: 152 credits. The specific requirements are as follows.

Module		Category	Minimum Credit Requirement	
	Chinese Language and Culture Module	Chinese Language and Culture	16	
	Arts and Physical Education	Physical Education	4	
	Module	Arts	2	
		Computer Programming	3	
	Competence Development Module	Writing	2	
	2.52 2.52	Foreign Languages	14	
General		Humanities		
Education Courses	Humanities and Social Sciences Module	Social Sciences	6	
		Chinese Studies	2	
	Mathematics and Natural	Mathematics	12	
		Physics	10	
	Sciences Module	Chemistry	3	
		Geoscience + Life Science	3	
	GE to Majors Bridging Module	Introduction to Majors	2	
		Major Foundational Courses	26	
Major Courses	Major Required Courses	Major Core Courses	15	
	major required courses	Practice-based Learning (Undergraduate Thesis, Internships, etc.)	14	
	Major Elective Courses	Major Elective Courses	18	
	Total		152	

Note: please see the General Education Requirement for more details on Chinese Language and Culture Module, Arts and Physical Education Module, Competence Development Module (Foreign Languages & Writing), Humanities and Social Sciences Module, and GE to Majors Bridging Module.

IV. Course Requirements for the Mathematics and Natural Sciences Module and Computer

Programming

Course Category	Course Code	Course Name	Credits	Terms	Prerequisite	Dept.	
	MA117	Calculus I	4	1 Fall	None		
Mathematics	MA127	Calculus II	4	1 Spring	MA117	MA	
	MA113	Linear Algebra	4	1 Spring & Fall	None		
	PHY105	College Physics I	4	1 Fall	None		
Physics	PHY106	College Physics II	4	1 Spring	PHY105	PHY	
1 Hysics	PHY104B	Experiments of Fundamental Physics	2	1-2 Spring & Fall	None		
Chemistry	CH105	Chemistry: The Central Science	3	1-2 Spring & Fall	None	СН	
Geoscience +	BIO102B	Introduction to Life Science	3	1-2 Spring & Fall	None	BIO	
Life Science	EOE100	Introduction to Earth Sciences	3	1-2 Spring & Fall	None	EOE	
Computer Programming	CS111	Introduction to C programming	3	1-2 Spring & Fall	None	CS	

Note:

- 1. The course of Calculus I and II can be replaced by Mathematical Analysis I and II.
- 2. The course of College Physics I and II can be replaced by General Physics I and II
- 3. The course of Linear Algebra can be replaced by Advanced Linear Algebra I.
- 4. The course of Introduction to C programming can be replaced by Introduction to Computer Programming.
- 5. The course of Chemistry: the Central Science can be replaced by General Chemistry.
- 6. The course of Introduction to Life Science can be replaced by Principles of Biology.
- 7. The course category Geoscience + Life Science can be chosen between Introduction to Life Science and Introduction to Earth Sciences.
- 8. The above alternatives are also applicable to "Prerequisites for Major Declaration."

V. Prerequisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
	MA117	Calculus I	None
	MA127	Calculus II	MA117
Declare major at	MA113	Linear Algebra	None
the end of the	PHY105	College Physics I	None
year	PHY106	College Physics II	PHY105
	PHY104B	Experiments of Fundamental Physics	None
	CS111	Introduction to C programming	None
	MA117	Calculus I	None
	MA127	Calculus II	MA117
	MA113	Linear Algebra	None
Declare major at	PHY105	College Physics I	None
the end of the second academic	PHY106	College Physics II	PHY105
year	PHY104B	Experiments of Fundamental Physics	None
,	CS111	Introduction to C programming	None
	CH105	Chemistry: The Central Science	None
	BIO102B	Introduction to Life Science	None

Note:

- 1. If the number of students entering a major at the end of the first academic year in the department is greater than or equal to the total number of the teaching-research faculty (PI)*2*60%, all majors in the department may implement the prerequisites for major declaration at the end of the second academic year.
- 2. If the number of students entering a major at the end of the first academic year in the department is less than the total number of the teaching-research faculty (PI)*2*60%, all majors in the department do not implement the prerequisites for major declaration at the end of the second academic year.
- 3. Suppose the number of students applying for a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), then the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).
- 4. For departments that do not implement prerequisites for major declaration at end of the second academic year, if the cumulative number of students applying for a major at the end of the second academic year and the number of students who have entered a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).

VI: Major Course Arrangement

Table 1: Major Required Courses

Program of Information Engineering

Course Category	Course Code	Course Name	Credits	Practice-bas ed Learning Credits	Terms	Prerequisite	Dept.
	EE104	Fundamentals of Electric Circuits	2	0	1 Spring	MA117 MA113	EE
	EE201-17	Analog Circuits	3	0	2 Fall	PHY106 EE104	EE
Z	EE201-17L	Analog Circuits Laboratory	1	1	2 Fall	EE201-17	EE
ajo	EE205	Signals and Systems	3	1	2 Fall	MA117	EE
Major Foundational Courses	EE207	Engineering Mathematics	4	0	2 Fall	MA127 PHY106 MA113	EE
tion	EE202-17	Digital Circuits	3	0	2 Spring	PHY106	EE
al C	EE202-17L	Digital Circuits Laboratory	1	1	2 Spring	EE202-17	EE
ourses	EE208	Engineering Electromagnetics	3	1	2 Spring	MA113 EE104	EE
	MA212	Probability and Statistics	3	0	2 Spring	MA127	MA
	EE351	Microprocessors and Microsystems	3	1	3 Fall	EE201-17 EE202-17	EE
		Total	26	5			
	EE206	Communication Principles	3	1	2 Spring	EE205	EE
	EE317	Advanced Electronic Science Experiment I	1	1	2 Spring	EE201-17 or EE202-17	EE
Major Core Courses	EE315	Data communications and networking	3	1	3 Fall	None	EE
Core	EE318	Advanced Electronic Science Experiment II	1	1	3 Fall	EE317	EE
Cou	EE323	Digital Signal Processing	3	1	3 Fall	EE205	EE
rses	EE332	Digital System Design	3	1	3 Spring	EE202-17	EE
∞	EE405	Advanced Electronic Science Experiment III	1	1	3 Spring	EE318	EE
		Total	15	7			
P	EE470	Internship	2	2	3 Summer	None	EE
Practice- based Courses	EE492	Undergraduate Thesis/Projects	12	12	4 Spring	None	EE
Total			14	14			
		Γotal	55	26			

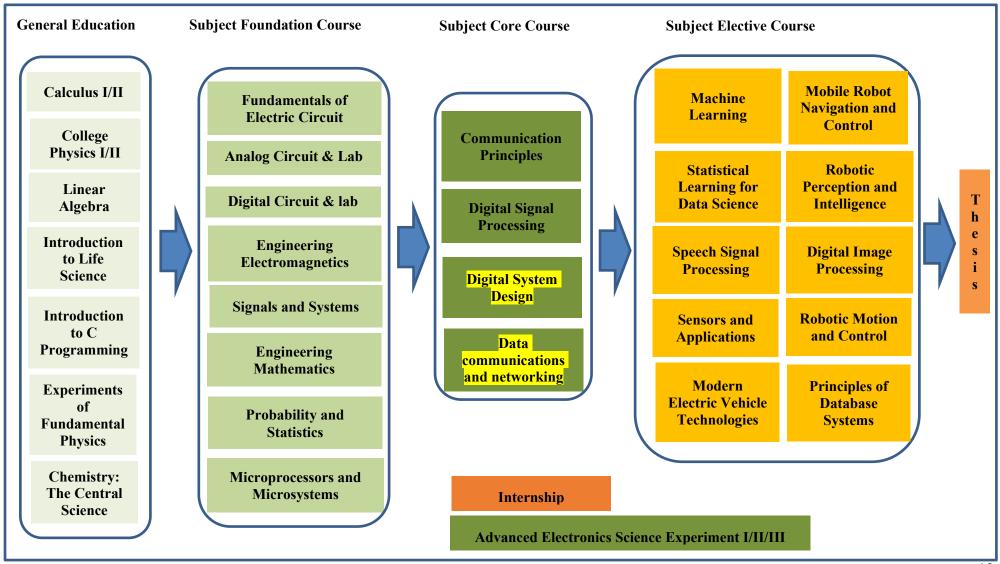
Note: Students who have completed Comprehensive Design I&II are not required to take the Graduation Projects/Thesis.

Table 2: Major Elective Courses

Program of Information Engineering

Course Category	Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
	EE211	Robotic Perception and Intelligence	3	1	2 Fall	None	EE
	EE342	Sensors and Applications	3	0	3 Fall	None	EE
	EE346	Mobile Robot Navigation and Control	3	1	3 Fall	EE205 MA212	EE
Mo	CS307	Principles of Database Systems	3	1	3 Fall	None	CS
Module A	EE326	Digital Image Processing	3	1	3 Spring	EE205	EE
e A	EE328	Speech Signal Processing	3	1	3 Spring	EE323	EE
	EE340	Statistical Learning for Data Science	3	0	3 Spring	MA113	EE
	EE348	Modern sensing technology	3	0	3 Spring	None	EE
	EE368	Robotic Motion and Control	3	1	3 Spring	EE205	EE
	CS405	Machine Learning	3	1	4 Fall	MA212 MA113	CS
	EE108	Optoelectronics Intellisense	3	0	1 Spring	None	EE
	EE203	Solid-state Electronics	3	0	2 Fall	PHY106	EE
	CS203B	Data Structures and Algorithm Analysis B	3	1	2 Fall	CS109	CS
	EE204	Introduction to Semiconductor Devices	3	1	2 Spring	EE203	EE
	EE210	Fundamentals of Optics	3	0	2 Spring	None	EE
	CS208	Algorithm Design and Analysis	3	1	2 Spring	CS109 CS203	CS
	EE303	Fundamentals of Optoelectronic Technology	3	1	3 Fall	PHY106	EE
	EE305	Introduction to VLSI Technology	3	1	3 Fall	EE203	EE
M	EE309	Introduction to Semiconductor Optics	3	0	3 Fall	None	EE
Module B	EE311	Optical Design	3	1	3 Fall	None	EE
le B	EE313	Wireless Communications	3	1	3 Fall	EE206	EE
	EE316	Microwave Engineering	3	1	3 Fall	EE201-17 EE208	EE
	EE335	Liquid crystal optoelectronics	3	1	3 Fall	EE210	EE
	EE345	Introduction of Wide Bandgap Semiconductors	3	0	3 Fall	EE203 or EE204	EE
	EE372	Nonimaging Optics	2	0	3 Fall	None	EE
	EE373	Optical System Design Experiment	1	1	3 Fall	None	EE
	CS303B	Artificial Intelligence B	3	1	3 Fall	CS203B CS109 MA212	CS
	MA305	Numerical Analysis	3	0	3 Fall	MA203A or MA213	MA
	EE307	Antennas and Radio	3	1	3 Spring	EE208	EE

		Propagation				EE104		
	EE308	Fiber Communication Principles and Techniques	3	1	3 Spring	None	EE	
	EE310	Principles and Technologies of Lasers	3	0	3 Spring	None	EE	
	EE312	Design of Modern Communication Systems	3	1	3 Spring	EE206 EE313	EE	
	EE322	Optoelectronics Devices Fabrication Laboratory	2	1	3 Spring	EE204	EE	
	EE336	Fundamentals of Photovoltaics	3	1	3 Spring	EE204	EE	
	EE411	Information Theory and Coding	2	0	4 Fall	MA212	EE	
	EE417	Communications System Design II	2	2	4 Fall	EE316 EE206 EE307	EE	
	EE435	Semiconductor Information Display Technologies	3	0	4 Fall	EE203 EE204	EE	
	EE404	Organic Electronics	2	0	4 Spring	None	EE	
	Total		104	24				
Note: At leas	ote: At least 18 credits are required, and at least three courses from Module A are required.							


Table 3: Overview of Practice-based Learning

Program of Information Engineering

Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
EE201-17L	Analog Circuits Laboratory	1	1	2 Fall	EE201-17	EE
EE205	Signals and Systems	3	1	2 Fall	MA117	EE
EE211	Robotic Perception and Intelligence	3	1	2 Fall	None	EE
CS203B	Data Structures and Algorithm Analysis B	3	1	2 Fall	CS109	CS
EE202-17L	Digital Circuits Laboratory	1	1	2 Spring	EE202-17	EE
EE204	Introduction to Semiconductor Devices	3	1	2 Spring	EE203	EE
EE206	Communication Principles	3	1	2 Spring	EE205	EE
EE208	Engineering Electromagnetics	3	1	2 Spring	MA113 EE104	EE
EE317	Advanced Electronic Science Experiment I	1	1	2 Spring	EE201-17 or EE202-17	EE
CS208	Algorithm Design and Analysis	3	1	2 Spring	CS109 CS203	CS
EE303	Fundamentals of Optoelectronic Technology	3	1	3 Fall	PHY106	EE
EE305	Introduction to VLSI Technology	3	1	3 Fall	EE203	EE
EE311	Optical Design	3	1	3 Fall	None	EE
EE313	Wireless Communications	3	1	3 Fall	EE206	EE
EE315	Data communications and networking	3	1	3 Fall	None	EE
EE316	Microwave Engineering	3	1	3 Fall	EE201-17	EE

					EE208	
EE318	Advanced Electronic Science Experiment II	1	1	3 Fall	EE317	EE
EE323	Digital Signal Processing	3	1	3 Fall	EE205	EE
EE335	Liquid crystal optoelectronics	3	1	3 Fall	EE210	EE
EE346	Mobile Robot Navigation and Control	3	1	3 Fall	EE205 MA212	EE
EE351	Microprocessors and Microsystems	3	1	3 Fall	EE201-17 EE202-17	EE
CS303B	Artificial Intelligence B	3	1	3 Fall	CS203B CS109 MA212	CS
CS307	Principles of Database Systems	3	1	3 Fall	None	CS
EE307	Antennas and Radio Propagation	3	1	3 Spring	EE208 EE104	EE
EE308	Fiber Communication Principles and Techniques	3	1	3 Spring	None	EE
EE312	Design of Modern Communication Systems	3	1	3 Spring	EE206 EE313	EE
EE322	Optoelectronics Devices Fabrication Laboratory	2	1	3 Spring	EE204	EE
EE326	Digital Image Processing	3	1	3 Spring	EE205	EE
EE328	Speech Signal Processing	3	1	3 Spring	EE323	EE
EE332	Digital System Design	3	1	3 Spring	EE202-17	EE
EE336	Fundamentals of Photovoltaics	3	1	3 Spring	EE204	EE
EE368	Robotic Motion and Control	3	1	3 Spring	EE205	EE
EE405	Advanced Electronic Science Experiment III	1	1	4 Fall	EE318	EE
EE470	Internship	2	2	3 Summer	None	EE
EE417	Communications System Design II	2	2	4 Fall	EE316 EE206 EE307	EE
CS405	Machine Learning	3	1	4 Fall	MA212 MA113	CS
EE492	Undergraduate Thesis/Projects	12	12	4 Spring	None	EE
	Total	107	50			

Curriculum Structure of Information Engineering

