**Department of Electrical and Electronic Engineering** 

**Program of Communication Engineering for International Students** 

(2024)

I. Introduction

Communication engineering, especially wireless communications engineering, has become

extremely important throughout the world and in particular for Shenzhen, which is recognized as a

world-class center of communication industry. With the increasing demand on mobile data access,

the development of next generation broadband communication systems has been initiated, which

would boost up career opportunity in related academic and industrial fields. The offered 4-year

undergraduate program on communication engineering is tailored for the most cutting-edge areas

in communication engineering. In addition to lecturers and labs, students are also encouraged to

work with supervisors on real research problems as early as the second year of the program. The

key areas under study include: classic and modern communication theory, microwave engineering,

wireless communications, optical communications, computer networks, embedded systems,

microwave imaging, etc.

Academic subject areas: Electronic Information

Program code: 080703

**II. Objectives and Learning Outcomes** 

1. Objectives

Attributes that alumni of Communication Engineering should demonstrate 3-5 years after

graduation include 4 aspects. Alumni are:

Technical Skills: technically competent to conduct research and development in the industry

and universities in the broad fields of Electronics and Information Engineering in general, and

Communication Engineering in particular.

Engineering Ethos: able to think critically and creatively, able to use engineering principles

to embrace challenging engineering and non-engineering problems encountered at work, able to

1

apply an analytic mindset, make informed decisions and able to provide innovative solutions.

Attitude: self-motivated with a desire for lifelong learning to adapt to the fast changing environment, able to operate with integrity and responsibility, having optimism and composure under tight schedule, and committed to make a positive impact on society locally and globally.

Leadership: effective communicators, well-prepared to advance towards leadership positions, able to capitalize the individual strengths of team members, and able to nurture the team to achieve goals.

#### 2. Learning Outcomes

Student Outcomes (SOs) that prepare graduates to enter the professional practice of engineering:

- SO 1: an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- SO 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  - SO 3: an ability to communicate effectively with a range of audiences.
- SO 4: an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- SO 5: an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- SO 6: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- SO 7: an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- SO 8: knowledge of probability and statistics including applications, differential and integral calculus, sciences, engineering sciences and computing science and application to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components.
- SO 9: knowledge and application of advanced mathematics, such as differential equations, linear algebra, and complex variables.
  - SO 10: knowledge and application of communication theory and systems, and computer

networks.

SO 11: an ability of analyze, design and develop communication systems and computer networks.

## III. Study Length, Degree, and Graduation Requirements

- 1. Study length: 4 years.
- 2. Degree conferred: Students who complete and meet the degree requirements of the undergraduate program will be awarded a bachelor's degree in Engineering
- 3. The minimum credit requirement for graduation: 152 credits. The specific requirements are as follows.

|                                 | Module                                 | Category                                                     | Minimum<br>Credit<br>Requirement |  |  |
|---------------------------------|----------------------------------------|--------------------------------------------------------------|----------------------------------|--|--|
|                                 | Chinese Language and<br>Culture Module | Chinese Language and Culture                                 | 16                               |  |  |
|                                 | Arts and Physical Education            | Physical Education                                           | 4                                |  |  |
|                                 | Module                                 | Arts                                                         | 2                                |  |  |
| General<br>Education<br>Courses |                                        | Computer Programming                                         | 3                                |  |  |
|                                 | Competence Development  Module         | Writing                                                      | 2                                |  |  |
|                                 |                                        | Foreign Languages                                            | 14                               |  |  |
|                                 |                                        | Humanities                                                   |                                  |  |  |
|                                 | Humanities and Social Sciences Module  | Social Sciences                                              | Requirement  16  4  2  3  2      |  |  |
|                                 |                                        | Chinese Studies                                              | 2                                |  |  |
|                                 | Mathematics and Natural                | Mathematics                                                  | 12                               |  |  |
|                                 |                                        | Physics                                                      | 10                               |  |  |
|                                 | Sciences Module                        | Chemistry                                                    | 3                                |  |  |
|                                 |                                        | Geoscience + Life Science                                    | 3                                |  |  |
|                                 | GE to Majors Bridging<br>Module        | Introduction to Majors                                       | 2                                |  |  |
|                                 |                                        | Major Foundational Courses                                   | 26                               |  |  |
|                                 | Major Required Courses                 | Major Core Courses                                           | 15                               |  |  |
| Major Courses                   |                                        | Practice-based Learning (Undergraduate Thesis, Internships.) | 14                               |  |  |
|                                 | Major Elective Courses                 | Major Elective Courses                                       | 18                               |  |  |
|                                 | Total                                  |                                                              | 152                              |  |  |

Note: please see the General Education Requirement for more details on Chinese Language and Culture Module, Arts and Physical Education Module, Competence Development Module (Foreign Languages & Writing), Humanities and Social Sciences Module, and GE to Majors Bridging Module.

# IV. Course Requirements for the Mathematics and Natural Sciences Module and Computer Programming

| Course<br>Category      | Course<br>Code | Course Name                        | Credits | Terms                | Prerequisit e | Dept. |
|-------------------------|----------------|------------------------------------|---------|----------------------|---------------|-------|
|                         | MA117          | Calculus I                         | 4       | 1 Fall               | None          |       |
| Mathematics             | MA127          | Calculus II                        | 4       | 1 Spring             | MA117         | MA    |
|                         | MA113          | Linear Algebra                     | 4       | 1 Spring<br>& Fall   | None          |       |
|                         | PHY105         | College Physics I                  | 4       | 1 Fall               | None          |       |
| Physics                 | PHY106         | College Physics II                 | 4       | 1 Spring             | PHY105        | PHY   |
| ·                       | PHY104B        | Experiments of Fundamental Physics | 2       | 1-2 Spring<br>& Fall | None          |       |
| Chemistry CH105         |                | Chemistry: The Central<br>Science  | 3       | 1-2 Spring<br>& Fall | None          | СН    |
| Geoscience +            | BIO102B        | Introduction to Life Science       | 3       | 1-2 Spring<br>& Fall | None          | BIO   |
| Life Science            | EOE100         | Introduction to Earth Sciences     | 3       | 1-2 Spring<br>& Fall | None          | EOE   |
| Computer<br>Programming | CS111          | Introduction to C programming      | 3       | 1-2 Spring<br>& Fall | None          | CS    |

#### Note:

- 1. The course of Calculus I and II can be replaced by Mathematical Analysis I and II.
- 2. The course of College Physics I and II can be replaced by General Physics I and II
- 3. The course of Linear Algebra can be replaced by Advanced Linear Algebra I.
- 4. The course of Introduction to C programming can be replaced by Introduction to Computer Programming.
- 5. The course of Chemistry: the Central Science can be replaced by General Chemistry.
- 6. The course of Introduction to Life Science can be replaced by Principles of Biology.
- 7. The course category Geoscience + Life Science can be chosen between Introduction to Life Science and Introduction to Earth Sciences.
- 8. The above alternatives are also applicable to "Prerequisites for Major Declaration."

#### V. Prerequisites for Major Declaration

| Major<br>Declaration<br>Time   | Course<br>Code | Course Name                        | Prerequisite |
|--------------------------------|----------------|------------------------------------|--------------|
|                                | MA117          | Calculus I                         | None         |
|                                | MA127          | Calculus II                        | MA117        |
| Declare major at               | MA113          | Linear Algebra                     | None         |
| the end of the first academic  | PHY105         | College Physics I                  | None         |
| year                           | PHY106         | College Physics II                 | PHY105       |
|                                | PHY104B        | Experiments of Fundamental Physics | None         |
|                                | CS111          | Introduction to C programming      | None         |
|                                | MA117          | Calculus I                         | None         |
|                                | MA127          | Calculus II                        | MA117        |
|                                | MA113          | Linear Algebra                     | None         |
| Declare major at               | PHY105         | College Physics I                  | None         |
| the end of the second academic | PHY106         | College Physics II                 | PHY105       |
| year                           | PHY104B        | Experiments of Fundamental Physics | None         |
|                                | CS111          | Introduction to C programming      | None         |
|                                | CH105          | Chemistry: The Central Science     | None         |
|                                | BIO102B        | Introduction to Life Science       | None         |

#### Note:

- 1. If the number of students entering a major at the end of the first academic year in the department is greater than or equal to the total number of the teaching-research faculty (PI)\*2\*60%, all majors in the department may implement the prerequisites for major declaration at the end of the second academic year.
- 2. If the number of students entering a major at the end of the first academic year in the department is less than the total number of the teaching-research faculty (PI)\*2\*60%, all majors in the department do not implement the prerequisites for major declaration at the end of the second academic year.
- 3. Suppose the number of students applying for a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), then the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).
- 4. For departments that do not implement prerequisites for major declaration at end of the second academic year, if the cumulative number of students applying for a major at the end of the second academic year and the number of students who have entered a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).

## VI: Major Course Arrangement

**Table 1: Major Required Courses** 

## **Program of Communication Engineering**

| Course<br>Category         | Course<br>Code | Course Name                                   | Credits   | Practice-bas<br>ed Learning<br>Credits | Terms      | Prerequisite             | Dept. |
|----------------------------|----------------|-----------------------------------------------|-----------|----------------------------------------|------------|--------------------------|-------|
|                            | EE104          | Fundamentals of Electric<br>Circuits          | 2         | 0                                      | 1 Spring   | MA117<br>MA113           | EE    |
|                            | EE201-17       | Analog Circuits                               | 3         | 0                                      | 2 Fall     | PHY106<br>EE104          | EE    |
| >                          | EE201-17L      | Analog Circuits Laboratory                    | 1         | 1                                      | 2 Fall     | EE201-17                 | EE    |
| 1ajo                       | EE205          | Signals and Systems                           | 3         | 1                                      | 2 Fall     | MA117                    | EE    |
| Major Foundational Courses | EE207          | Engineering Mathematics                       | 4         | 0                                      | 2 Fall     | MA127<br>PHY106<br>MA113 | EE    |
| tion                       | EE202-17       | Digital Circuits                              | 3         | 0                                      | 2 Spring   | PHY106                   | EE    |
| al C                       | EE202-17L      | Digital Circuits Laboratory                   | 1         | 1                                      | 2 Spring   | EE202-17                 | EE    |
| ourses                     | EE208          | Engineering<br>Electromagnetics               | 3         | 1                                      | 2 Spring   | MA113<br>EE104           | EE    |
|                            | MA212          | Probability and Statistics                    | 3         | 0                                      | 2 Spring   | MA127                    | MA    |
|                            | EE351          | Microprocessors and Microsystems              | 3         | 1                                      | 3 Fall     | EE201-17<br>EE202-17     | EE    |
|                            |                | Total                                         | 26        | 5                                      |            |                          |       |
|                            | EE206          | Communication Principles                      | 3         | 1                                      | 2 Spring   | EE205                    | EE    |
|                            | EE317          | Advanced Electronic Science<br>Experiment I   | 1         | 1                                      | 2 Spring   | EE201-17 or<br>EE202-17  | EE    |
| Ma                         | EE313          | Wireless Communications                       | 3         | 1                                      | 3 Fall     | EE206                    | EE    |
| Major Core Courses         | EE316          | Microwave Engineering                         | 3         | 1                                      | 3 Fall     | EE201-17<br>EE208        | EE    |
| ore Co                     | EE318          | Advanced Electronic Science<br>Experiment II  | 1         | 1                                      | 3 Fall     | EE317                    | EE    |
| urses                      | EE307          | Antennas and Radio Propagation                | 3         | 1                                      | 3 Spring   | EE208<br>EE104           | EE    |
|                            | EE405          | Advanced Electronic Science<br>Experiment III | 1         | 1                                      | 3 Spring   | EE318                    | EE    |
|                            |                | Total                                         | 15        | 7                                      |            |                          |       |
| Pr<br>sec                  | EE470          | Internship                                    | 2         | 2                                      | 3 Summer   | None                     | EE    |
| Practice-ba<br>sed Courses | EE492          | Undergraduate<br>Thesis/Projects              | 12        | 12                                     | 4 Spring   | None                     | EE    |
| ba<br>ses                  | € 5 Total      |                                               |           | 14                                     |            |                          |       |
|                            | 7              | Γotal                                         | 55        | 26                                     |            |                          |       |
| NT 4 C4 1                  | , 1 1          | 1 + 1 C 1 1 P                                 | -: T 0-TT |                                        | 1 , , 1 ,1 | G 1 .:                   |       |

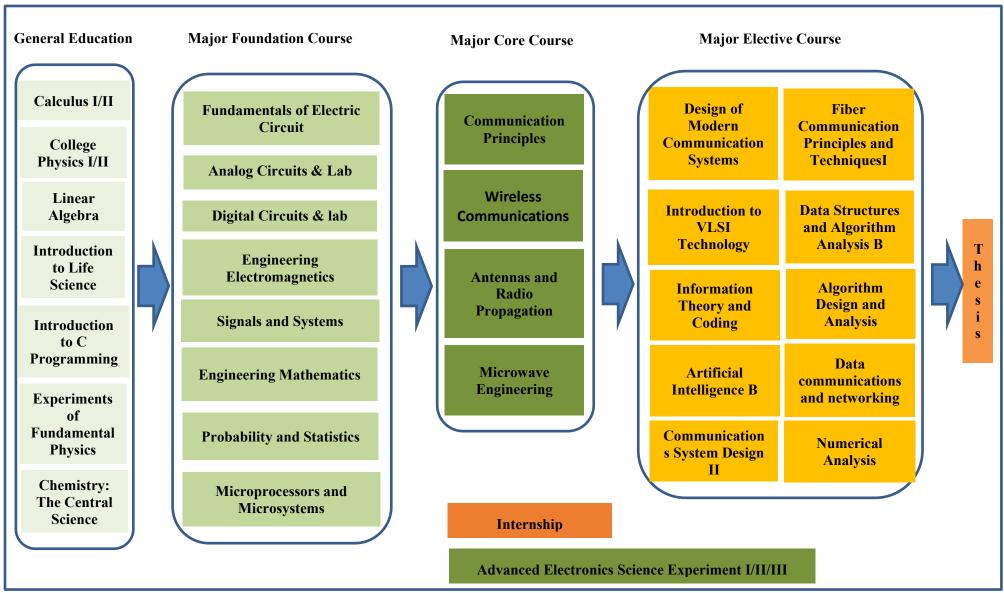
Note: Students who have completed Comprehensive Design I&II are not required to take the Graduation Projects/Thesis.

**Table 2: Major Elective Courses** 

## **Program of Communication Engineering**

| Course<br>Category | Course<br>Code | Course Name                                    | Credits | Practice-based<br>Learning<br>Credits | Terms    | Prerequisite             | Dept. |
|--------------------|----------------|------------------------------------------------|---------|---------------------------------------|----------|--------------------------|-------|
|                    | CS203B         | Data Structures and Algorithm<br>Analysis B    | 3       | 1                                     | 2 Fall   | CS109                    | CS    |
|                    | CS208          | Algorithm Design and<br>Analysis               | 3       | 1                                     | 2 Spring | CS109<br>CS203           | CS    |
|                    | EE305          | Introduction to VLSI<br>Technology             | 3       | 1                                     | 3 Fall   | EE203                    | EE    |
|                    | EE315          | Data communications and networking             | 3       | 1                                     | 3 Fall   | None                     | EE    |
| Module A           | CS303B         | Artificial Intelligence B                      | 3       | 1                                     | 3 Fall   | CS203B<br>CS109<br>MA212 | CS    |
| ule A              | MA305          | Numerical Analysis                             | 3       | 0                                     | 3 Fall   | MA203A or<br>MA213       | MA    |
|                    | EE308          | Fiber Communication Principles and Techniques  | 3       | 1                                     | 3 Spring |                          | EE    |
|                    | EE312          | Design of Modern<br>Communication Systems      | 3       | 1                                     | 3 Spring | EE206<br>EE313           | EE    |
|                    | EE411          | Information Theory and Coding                  | 2       | 0                                     | 4 Fall   | MA212                    | EE    |
|                    | EE417          | Communications System Design II                | 2       | 2                                     | 4 Fall   | EE316<br>EE206<br>EE307  | EE    |
|                    | EE108          | Optoelectronics Intellisense                   | 3       | 0                                     | 1 Spring | None                     | EE    |
|                    | EE203          | Solid-state Electronics                        | 3       | 0                                     | 2 Fall   | PHY106                   | EE    |
|                    | EE211          | Robotic Perception and<br>Intelligence         | 3       | 1                                     | 2 Fall   | None                     | EE    |
|                    | EE204          | Introduction to<br>Semiconductor Devices       | 3       | 1                                     | 2 Spring | EE203                    | EE    |
|                    | EE210          | Fundamentals of Optics                         | 3       | 0                                     | 2 Spring | None                     | EE    |
|                    | CS307          | Principles of Database<br>Systems              | 3       | 1                                     | 3 Fall   | None                     | CS    |
|                    | EE303          | Fundamentals of Optoelectronic Technology      | 3       | 1                                     | 3 Fall   | PHY106                   | EE    |
| Module B           | EE309          | Introduction to<br>Semiconductor Optics        | 3       | 0                                     | 3 Fall   | None                     | EE    |
| le B               | EE311          | Optical Design                                 | 3       | 1                                     | 3 Fall   | None                     | EE    |
|                    | EE323          | Digital Signal Processing                      | 3       | 1                                     | 3 Fall   | EE205                    | EE    |
|                    | EE335          | Liquid crystal optoelectronics                 | 3       | 1                                     | 3 Fall   | EE210                    | EE    |
|                    | EE342          | Sensors and Applications                       | 3       | 0                                     | 3 Fall   | None                     | EE    |
|                    | EE345          | Introduction of Wide Bandgap<br>Semiconductors | 3       | 0                                     | 3 Fall   | EE203 or<br>EE204        | EE    |
|                    | EE346          | Mobile Robot Navigation and<br>Control         | 3       | 1                                     | 3 Fall   | EE205<br>MA212           | EE    |
|                    | EE372          | Nonimaging Optics                              | 2       | 0                                     | 3 Fall   | None                     | EE    |
|                    | EE373          | Optical System Design<br>Experiment            | 1       | 1                                     | 3 Fall   | None                     | EE    |
|                    | EE310          | Principles and Technologies                    | 3       | 0                                     | 3 Spring | None                     | EE    |

|            |                                                                                                | of Lasers                                         |   |   |          |                |    |  |  |
|------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|---|---|----------|----------------|----|--|--|
|            | EE322                                                                                          | Optoelectronics Devices<br>Fabrication Laboratory | 2 | 1 | 3 Spring | EE204          | EE |  |  |
|            | EE326                                                                                          | Digital Image Processing                          | 3 | 1 | 3 Spring | EE205          | EE |  |  |
|            | EE328                                                                                          | Speech Signal Processing                          | 3 | 1 | 3 Spring | EE323          | EE |  |  |
|            | EE332                                                                                          | Digital System Design                             | 3 | 1 | 3 Spring | EE202-17       | EE |  |  |
|            | EE336                                                                                          | Fundamentals of Photovoltaics                     | 3 | 1 | 3 Spring | EE204          | EE |  |  |
|            | EE340                                                                                          | Statistical Learning for Data<br>Science          | 3 | 0 | 3 Spring | MA113          | EE |  |  |
|            | EE348                                                                                          | Modern sensing technology                         | 3 | 0 | 3 Spring | None           | EE |  |  |
|            | EE368                                                                                          | Robotic Motion and Control                        | 3 | 1 | 3 Spring | EE205          | EE |  |  |
|            | CS405                                                                                          | Machine Learning                                  | 3 | 1 | 4 Fall   | MA212<br>MA113 | CS |  |  |
|            | EE435                                                                                          | Semiconductor Information Display Technologies    | 3 | 0 | 4 Fall   | EE203<br>EE204 | EE |  |  |
|            | EE404                                                                                          | Organic Electronics                               | 2 | 0 | 4 Spring | None           | EE |  |  |
|            | <b>Total</b> 104 24                                                                            |                                                   |   |   |          |                |    |  |  |
| Note: At I | Note: At least18 credits are required , and at least three courses from Module A are required. |                                                   |   |   |          |                |    |  |  |


**Table 3: Overview of Practice-based Learning** 

# **Program of Communication Engineering**

| Course Code | Course Name                                 | Credits | Practice-based<br>Learning<br>Credits | Terms    | Prerequisite            | Dept. |
|-------------|---------------------------------------------|---------|---------------------------------------|----------|-------------------------|-------|
| EE201-17L   | Analog Circuits Laboratory                  | 1       | 1                                     | 2 Fall   | EE201-17                | EE    |
| EE205       | Signals and Systems                         | 3       | 1                                     | 2 Fall   | MA117                   | EE    |
| EE211       | Robotic Perception and Intelligence         | 3       | 1                                     | 2 Fall   | None                    | EE    |
| CS203B      | Data Structures and Algorithm Analysis B    | 3       | 1                                     | 2 Fall   | CS109                   | CS    |
| EE202-17L   | Digital Circuits Laboratory                 | 1       | 1                                     | 2 Spring | EE202-17                | EE    |
| EE204       | Introduction to Semiconductor Devices       | 3       | 1                                     | 2 Spring | EE203                   | EE    |
| EE206       | Communication Principles                    | 3       | 1                                     | 2 Spring | EE205                   | EE    |
| EE208       | Engineering Electromagnetics                | 3       | 1                                     | 2 Spring | MA113<br>EE104          | EE    |
| EE317       | Advanced Electronic Science<br>Experiment I | 1       | 1                                     | 2 Spring | EE201-17 or<br>EE202-17 | EE    |
| CS208       | Algorithm Design and Analysis               | 3       | 1                                     | 2 Spring | CS109<br>CS203          | CS    |
| EE303       | Fundamentals of Optoelectronic Technology   | 3       | 1                                     | 3 Fall   | PHY106                  | EE    |
| EE305       | Introduction to VLSI Technology             | 3       | 1                                     | 3 Fall   | EE203                   | EE    |
| EE311       | Optical Design                              | 3       | 1                                     | 3 Fall   | None                    | EE    |
| EE313       | Wireless Communications                     | 3       | 1                                     | 3 Fall   | EE206                   | EE    |
| EE315       | Data communications and networking          | 3       | 1                                     | 3 Fall   | None                    | EE    |
| EE316       | Microwave Engineering                       | 3       | 1                                     | 3 Fall   | EE201-17<br>EE208       | EE    |

| EE318  | Advanced Electronic Science<br>Experiment II      | 1   | 1  | 3 Fall   | EE317                    | EE |
|--------|---------------------------------------------------|-----|----|----------|--------------------------|----|
| EE323  | Digital Signal Processing                         | 3   | 1  | 3 Fall   | EE205                    | EE |
| EE335  | Liquid crystal optoelectronics                    | 3   | 1  | 3 Fall   | EE210                    | EE |
| EE346  | Mobile Robot Navigation and<br>Control            | 3   | 1  | 3 Fall   | EE205<br>MA212           | EE |
| EE351  | Microprocessors and Microsystems                  | 3   | 1  | 3 Fall   | EE201-17<br>EE202-17     | EE |
| CS303B | Artificial Intelligence B                         | 3   | 1  | 3 Fall   | CS203B<br>CS109<br>MA212 | CS |
| CS307  | Principles of Database Systems                    | 3   | 1  | 3 Fall   | None                     | CS |
| EE307  | Antennas and Radio Propagation                    | 3   | 1  | 3 Spring | EE208<br>EE104           | EE |
| EE308  | Fiber Communication Principles and Techniques     | 3   | 1  | 3 Spring | None                     | EE |
| EE312  | Design of Modern<br>Communication Systems         | 3   | 1  | 3 Spring | EE206<br>EE313           | EE |
| EE322  | Optoelectronics Devices<br>Fabrication Laboratory | 2   | 1  | 3 Spring | EE204                    | EE |
| EE326  | Digital Image Processing                          | 3   | 1  | 3 Spring | EE205                    | EE |
| EE328  | Speech Signal Processing                          | 3   | 1  | 3 Spring | EE323                    | EE |
| EE332  | Digital System Design                             | 3   | 1  | 3 Spring | EE202-17                 | EE |
| EE336  | Fundamentals of Photovoltaics                     | 3   | 1  | 3 Spring | EE204                    | EE |
| EE368  | Robotic Motion and Control                        | 3   | 1  | 3 Spring | EE205                    | EE |
| EE405  | Advanced Electronic Science<br>Experiment III     | 1   | 1  | 4 Fall   | EE318                    | EE |
| EE470  | Internship                                        | 2   | 2  | 3 Summer | None                     | EE |
| EE417  | Communications System Design II                   | 2   | 2  | 4 Fall   | EE316<br>EE206<br>EE307  | EE |
| CS405  | Machine Learning                                  | 3   | 1  | 4 Fall   | MA212<br>MA113           | CS |
| EE492  | Undergraduate Thesis/Projects                     | 12  | 12 | 4 Spring | None                     | EE |
|        | Total                                             | 107 | 50 |          |                          |    |

### **Curriculum Structure of Communication Engineering**

