Department of Mechanical and Energy Engineering

Program of Robotics Engineering for International Students (2022)

I. Introduction

Robotics Engineering is an interdisciplinary program that integrates the learning of mechanical, electronic, and computer technologies. The aim of the program is to cultivate leading talents with solid scientific foundation, excellent innovative practical ability and broad international vision, who are good at comprehensive application of theories and methods of robotics and related disciplines, and who can solve engineering problems with the latest scientific development for the future. In terms of research, its directions cover industrial robots, robot software, bionic robots, medical robots, field robots, microrobots and emerging frontier areas of science and technology such as artificial intelligence, autonomous system, supporting the national economic development plan and Shenzhen's local informatization, intellectualization and manufacturing comprehensive upgrade.

Academic subject area: Automation; Program code: 080803T

II. Objectives and Learning Outcomes

1. Objectives

This program bases its objectives on the future development of robotics engineering and serves the human resource demand of the field in the background of the national mid and long term development planning. The program is committed to fostering students with a solid scientific foundation, excellent innovation capacity, broad international vision, integrated use of robotics theories and related disciplines, and skills of solving the engineering problems for the future with the latest science development.

2. Learning Outcomes

a) Solid and broad basic theoretical knowledge (including mathematics, physics, machinery, automation, electronics, computer, etc.), as well as subject knowledge in robot engineering.
b) Master the robotics theories, research and engineering design methods of robot engineering, and have a good knowledge of engineering technology and frontier development of the industry.

Robotics Engineering is a multidisciplinary and interdisciplinary program and foster its students to become leading cross-disciplinary talents for the future.
c) Develop students with rigorous and practical attitude toward science and research, engagement in pursuing excellence, a strong sense of social responsibility and mission, and good communication skills.
d) Develop students with innovative thinking and the ability to independently identify, understand and solve problems in the real world with the application of robotics via the learning of the program.
e) Develop the international outlook and skills of communication and collaboration with international professionals of the related industry.

III. Study Length, Degree, and Graduation Requirements

1. Study length: 4 years. The academic credit system of SUSTech allows flexible study years, but not less than 3 years or more than 6 years
2. Degree conferred: Students who complete and meet the degree requirements of the undergraduate program will be awarded a Bachelor's Degree in Engineering.
3. The minimum credit requirement for graduation: 152 credits. The specific requirements are as follows.

	Module	Category	Minimum Credit Requirement
General Education Courses	Chinese Language and Culture Module	Chinese Language and Culture	16
	Arts and Physical Education Module	Physical Education	4
		Arts	2
	Competence Development Module	Computer Programming	3
		Writing	2
		Chinese Studies	2
		Foreign Languages	14
	Humanities and Social Sciences Module	Humanities	6
		Social Sciences	
	Mathematics and Natural Sciences Module	Mathematics	12
		Physics	10
		Chemistry	3
		Biology	3
	Introduction to Majors Module	Introduction to Majors	2
Major Courses	Major Required Courses	Major Foundational Courses	26
		Major Core Courses	20
		Practice-based Learning (Undergraduate Thesis, Internships, Research projects, etc.)	12
	Major Elective Courses	Major Elective Courses	15
Total			152
Note: please see the General Education Requirement for more details on Chinese Language and Culture Module, Arts and Physical Education Module, Competence Development Module (Foreign Languages \& Chinese Studies \& Writing) , Humanities and Social Sciences Module, and Introduction to Majors Module.			

IV. Course Requirements for the Mathematics and Natural Sciences Module and

 Computer Programming| Course | Course Code | Course Name | Credits | Terms | Prerequisite | Dept. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

V. Prerequisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
Declare major at the end of the first academic year	MA101a/ MA117	Mathematical Analysis I /Calculus I	None
	MA102a/ MA127	Mathematical Analysis II /Calculus	Mathematical Analysis I/ Calculus I
	PHY101/ PHY105	General Physics I /College Physics I	None
	PHY102/ PHY106	General Physics II /College Physics	General Physics I/ College Physics I
	Note: The above courses are required to be completed. In addition, at least one of the following Course Category should be passed: 1. Mathematics: MA107/MA113 Advanced Linear Algebra I / Linear Algebra 2. Physics: PHY104B Experiments of Fundamental Physics. 3. Chemistry: CH103/CH105 General Chemistry / Chemistry: The Central Science. 4. Biology: BIO102B/BIO103 Principles of Biology / Introduction to Life Science. 5. Computer Programming: CS109/CS110/CS111/CS112 Introduction to Computer Programming/ Introduction to Java Programming/ Introduction to C programming/ Introduction to Python Programming Python		
Declare major at the end of the second academic year	MA101a/ MA117	Mathematical Analysis I /Calculus I	None
	MA102a/ MA127	Mathematical Analysis II /Calculus II	Mathematical Analysis I/ Calculus I
	PHY101/ PHY105	General Physics I /College Physics I	None
	PHY102/ PHY106	General Physics II /College Physics II	General Physics I/ College Physics I
	MA107/ MA113	Advanced Linear Algebra I / Linear Algebra	None
	Note: The above courses are required to be completed. In addition, at least one of the following Course Category should be passed: CS109/CS110/CS111/CS112 Introduction to Computer Programming/ Introduction to Java Programming/ Introduction to C programming/ Introduction to Python Programming Python.		
Note: 1. If the number of students entering a major at the end of the first academic year in the department is greater than or equal to the total number of the teaching-research faculty $(\mathbf{P I}) * 2 * 60 \%$, all majors in the department may implement the prerequisites for major declaration at the end of the second academic year. 2. If the number of students entering a major at the end of the first academic year in the department is less than the total number of the teaching-research faculty (PI)*2*60\%, all majors in the department do not implement the prerequisites for major declaration at the end of the second academic year. 3. Suppose the number of students applying for a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), then the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance). 4. For departments that do not implement prerequisites for major declaration at end of the second academic year, if the cumulative number of students applying for a major at the end of the second academic year and the number of students who have entered a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).			

VI: Major Course Arrangement

Table 1: Major Required Courses

Program of Robotics Engineering

Course Category	Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
氷。	ME103	Awareness Practice of Manufacturing Engineering	3	2	$\begin{gathered} \text { 1/Summer, 1- } \\ 2 \text { Spring } \\ \text { \&Fall } \end{gathered}$		MEE
	ME102	CAD and Engineering Drawing	3	1.5	2 Spring \&Fall		MEE
	EE104	Fundamentals of Electric Circuits	2		2 Spring \&Fall	MA101B, MA113	EE
	EE205	Signals and Systems	3	1	2/Fall	MA127	EE
	MAE203B	Engineering Mechanics I - Statics and Dynamics	3		2/Fall	MA113	MAE
	MA212	Probability and Statistics	3	1	2 Spring \&Fall	MA127	MA
	ME212	Materials Mechanics in Mechanical Engineering	3		2/Fall		MEE
	ME307	Fundamentals of Control Engineering	3	0.5	2/Spring	EE104	MEE
	ME213	Principles of Machinery	3		2/Spring		MEE
		Total	26	6			
	ME331	Robot Modeling and Control	3		3/Fall	MAE203B	MEE
	ME311	Mechanical Design	3		3/Fall		MEE
	ME316	Machinery and Mechanical Design Labs	2	2	3 Spring \&Fall		MEE
	ME322	Robotic Actuation System	3	1	3/Fall	MA127	MEE
	ME323	Sensing Technologies	3	0.5	3/Spring	EE104, EE205	MEE
	ME333	Mechatronic Systems	3	1	3/Spring	ME331	MEE
	ME338	Machine Learning for Engineering	3		4/Fall	MA212, CS109/ CS110/ CS111/ CS112, MA107A	MEE
	Total		20	4.5			

	ME498	Senior Project*	12	12	4/Spring	MEE
		otal	12	12		
Total			58	22.5		

Table 2: Major Elective Courses
Program of Robotics Engineering

Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
ME332	Robot Operating System	3	1	2/Spring	CS109/ CS110/ CS111/ CS112/ CS113	MEE
CS205	C/C++ Program Design	3	1	2/Spring		CS
EE202-17	Digital Circuits	3		2 Spring \&Fall	PHY106	EE
MEE5002	Fundamentals and practices of project management	3		2/Spring		MEE
EE201-17	Analog Circuits	3		3 Spring \&Fall	$\begin{gathered} \hline \text { PHY106, } \\ \text { EE104 } \\ \hline \end{gathered}$	EE
CS203B	Data Structures and Algorithm Analysis B	3	1	3/Fall	CS109	CS
ME315	Mechanisms and Applications	3		3/Fall	$\begin{aligned} & \text { ME212, } \\ & \text { MA113 } \end{aligned}$	MEE
MEE5103	Walking Robot	3	0.5	3/Fall	ME331	MEE
CS308	Computer Vision	3	1	3/Fall		CS
ME301	Dynamics and Vibration	3	1	3/Spring	$\begin{aligned} & \text { MAE203B, } \\ & \text { MA201b } \end{aligned}$	MEE
ME302	Fundamentals of Manufacturing	3		3/Spring	ME103	MEE
ME313	Product Design Practice	3	1	3/Spring	ME213/ ME311/ ME316/ ME331	MEE
ME314	Finite Element Theory and Its Engineering Applications	3		3/Spring	$\begin{aligned} & \text { ME212, } \\ & \text { MA113 } \end{aligned}$	MEE
ME336	Collaborative Robot Learning	3	1	3/Spring	ME331	MEE
MEE5108	Microrobotics	3		3/Spring	ME307	MEE
MEE5116	Advanced Kinematics and Dynamics of Mechanisms	3		3/Spring	ME331	MEE
CS401	Intelligent Robotics	3	1	3/Spring	$\begin{gathered} \text { MA212, } \\ \text { CS102B, } \\ \text { CS203 } \end{gathered}$	CS
ME424	Modern Control and Estimation	3		4/Fall	ME307	MEE
MEE5105	Fundamentals of Engineering Optimization	3		4/Fall	MA127, MA113	MEE
MEE5107	Microfabrication and Microsystems	3		4/Fall	ME307	MEE
MEE5110	Soft Robotics	3		4/Fall	ME213	MEE
MEE5115	Autonomous Robotic Systems	3		4/Fall	MA113, MA212	MEE
	Total	66	8.5			

Note:

1. The minimum requirement for graduation in this module is 15 credits. In addition, the courses starting with MEE can't be more than 6 credits.
2. Major elective courses selected by a student during any specific semester may be changed according to the loading situation.
3. The number and contents of major elective courses offered by the department may be adjusted according to the development of curriculum construction.

Table 3: Overview of Practice-based Learning
Program of Robotics Engineering

Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
ME103	Awareness Practice of Manufacturing Engineering	3	2	1/Summer, 1-2 Spring \&Fall		MEE
ME102	CAD and Engineering Drawing	3	1.5	2 Spring \&Fall		MEE
EE205	Signals and Systems	3	1	2/Fall	MA127	EE
MA212	Probability and Statistics	3	1	2 Spring \&Fall	MA127	MA
ME307	Fundamentals of Control Engineering	3	0.5	2/Spring	EE104	MEE
ME316	Machinery and Mechanical Design Labs	2	2	3 Spring \&Fall		MEE
ME322	Robotic Actuation System	3	1	3/Fall	MA127	MEE
ME323	Sensing Technologies	3	0.5	3/Spring	EE104, EE205	MEE
ME333	Mechatronic Systems	3	1	3/Spring	ME331	MEE
ME332	Robot Operating System	3	1	2/Spring	$\begin{array}{\|c\|} \hline \text { CS109/ CS110/ } \\ \text { CS111/ } \\ \text { CS112/ } \\ \text { CS113 } \\ \hline \end{array}$	MEE
CS205	C/C++ Program Design	3	1	2/Spring		CS
CS203B	Data Structures and Algorithm Analysis B	3	1	3/Fall	CS109	CS
MEE5103	Walking Robot	3	0.5	3/Fall	ME331	MEE
CS308	Computer Vision	3	1	3/Fall		CS
ME301	Dynamics and Vibration	3	1	3/Spring	$\begin{aligned} & \text { MAE203B, } \\ & \text { MA201b } \end{aligned}$	MEE
ME313	Product Design Practice	3	1	3/Spring	ME213/ ME311 / ME316/ ME331	MEE
ME336	Collaborative Robot Learning	3	1	3/Spring	ME331	MEE
CS401	Intelligent Robotics	3	1	3/Spring	MA212, CS102B, CS203	CS
ME498	Senior Project	12	12	4/Spring		MEE
Total		65	31			

Curriculum Structure of Robotics Engineering

General Education
Courses (79)

Chinese Language and
Culture Module (16)
Arts and Physical Educatio
Module (6)
Physical Education, Arts
Competence Development Module (21)
Computer Programming,
Writing,
Chinese Studies,
Foreign Languages

Humanities and Social

Sciences Module (6)
Humanities,
Social Sciences
Mathematics and Natural Sciences Module (28)
Mathematics
Physics,
Chemistry,
Biology
Introduction to Majors Modul (2)

CAD and Engineering Drawing	Robot Modeling and Control
Fundamentals of Electric Circuits	Mechanical Design
Awareness Practice of Manufacturing Engineering	
	Machinery and Mechanical Design Labs
Engineering Mechanics I - Statics and Dynamics	
	Robotic Actuation System
Signals and Systems	
Probability and Statistics	Sensing Technologies
Fundamentals of Control Engineering	
Materials Mechanics in Mechanical Engineering	Mechatronic Systems
Principles of Machinery	Machine Learning for Engineering

Major Elective Courses* (≥ 15)

- Robot Operating System
- C/C++ Program Desig
- Didgital Circuits
- Fundamentals and practices of project

$$
\begin{gathered}
\text { managememt } \\
\text { Analoo Circuit }
\end{gathered}
$$

- Data Structures and Algorithm Analysis B
- Mechanisms and Applications
- Walking Robot
Computer Visio
Dynamics and Vibration
ndamentals of Manufacturing
- Product Design Practice
Finite Element Theory and Its Engineering Applications
- Collaborative Robot Learning
- Microrobotics
- Advanced Kinematics and Dynamics of Mechanisms
- Modern Control and Estimation
Fundamentals of Engineering Optimization
- Microfabrication and Microsystems
- Soft Robotics
- Intelligent Robotics
\qquad

Practice \& Internship

Note*: Major Elective Courses only list some courses, all courses are detailed in the program.

