# Department of Statistics and Data Science 

## Program of Statistics for International Students (2021)

## I. Introduction

Established in April 2019, the Department of Statistics and Data Science aims to build up a world-class educational training and research center. The department is committed to cultivating top-notch talents with solid scientific knowledge, active thoughts, innovative awareness, and global vision. Until June 2021, the department has 14 full-time ( 3 of them will join soon) and 4 jointly appointed faculty members, including 4 Chair Professors, 4 Professors, 5 Associate Professors, 5 Tenure-track Assistant Professors and 1 Visiting Assistant Professor. All faculty members have extensive overseas study or work experiences. One member is an invited speaker at the International Congress of Mathematics, and IMS Medallion Lecturer. Two members are the winners of the prestigious State Natural Science Award (2nd class). At present, the department has two undergraduate programs, namely the Program of Statistics and the Program of Data Science and Big Data Technology, as well as two graduate programs (M.Phil. and Ph.D.), which cover a broad array of research areas including Biostatistics, Clinical Trial Design, High Dimensional Data Analysis, Random Matrix, Time Series, Bayesian Statistics, Financial Statistics, Limit Theory in Probability and Statistics, Data Science and Big Data Technology. Statistics is applied extensively in various disciplines, from natural sciences (like physics, chemistry, biomedicine, etc.) to social sciences and humanities, as well as business and government decision-making. The undergraduate program of Statistics focuses on applying probability theory to establish statistical models based on the collected data, conduct quantitative analysis, and make inferences and predictions to serve as the reference for decision-making.

## II. Objectives and Learning Outcomes

The objective for international undergraduates majoring in statistics is to cultivate professional talents who are interested in statistical research or data analysis. International undergraduates in this major will have a solid theoretical foundation in mathematics and statistics, proficient computer programming skills, and be good at statistical modeling and analysis of real data. Moreover, they will be able to conduct further research related to statistics or engage in data analysis, data mining, statistical investigate, statistical information management in enterprises and government departments. In the era of big data, statistics faces a wealth of opportunities and challenges. Graduates of statistics major will have a strong theoretical background in statistics and a broad range of knowledge to seize the opportunities and meet the challenges.

The learning outcomes are:

1. Students should have a solid mathematical foundation, master the basic knowledge and
theories of statistics, and understand the basics of natural science, social science, engineering technologies related to biomedical statistics, social economic statistics, industrial statistics, etc.
2. Students should be able to proficiently read statistical literature in English, master the principal methods of literature search, information retrieval, and data query with modern information technology.
3. Students should be equipped with the essential skills of applying statistical knowledge and principles to analyze and solve practical problems. These skills include but are not limited to experienced in using computer (including commonly used tools, programming languages, and statistical software) and writing simple programs; design questionnaires, conduct survey, collect and process survey data; good communication skills and teamwork spirit.

## III. Study Length and Graduation Requirements

Study length: 4 years
Degree conferred: Bachelor of Science
The minimum credit requirement for graduation: 129credits (not including English courses);

| Category | Module | Minimum Credit Requirement |
| :---: | :---: | :---: |
| General Education (GE) <br> Required Courses <br> (50 credits) | Science | 28 |
|  | Physical Education | 4 |
|  | Chinese Languages \& Culture | 16 |
|  | Humanities | 4 |
|  | Social Sciences | 4 |
| Major Course <br> (68 credits) | Arts | 2 |
|  | Science | 3 |
|  | Major Foundational Courses | 12 |
|  | Major Core Courses | 22 |
| Total (not including English Language courses) |  | 24 |

## IV. Discipline

Major type: Statistics (0712); Major code: 071201.

## V. Main Courses

The fundamental and core courses of the Bachelor Program in Statistics include: Mathematical Analysis I, II, III, Linear Algebra A, Probability Theory, Ordinary Differential Equations A, Mathematical Statistics, Statistical Linear Models, Statistical Computation and Software, Applied Stochastic Processes, Time Series Analysis, Statistical Data Analysis with SAS, Multivariate Statistical Analysis.

## VI. Practice-Based Courses

Undergraduate Thesis / Project, Research Project, Internship, etc.

## VII. Pre-requisites for Major Declaration

| Major Declaration Time | Course <br> Code | Course Name | Prerequisite |
| :---: | :---: | :---: | :---: |
| Declare major at the end of Second Year | MA101B | Calculus I A | NA |
|  | MA102B | Calculus II A | MA101B |
|  | MA213-16 | Mathematical Analysis | MA102B |
|  | MA107A | Linear Algebra A | NA |
|  | MA215 | Probability Theory | MA102B |
|  | MA204 | Mathematical Statistics | MA215 |
|  | PHY103B | General Physics B (I) | NA |
|  | PHY105B | General Physics B (II) | PHY103B |
|  | CS102B | Introduction to Compute Programming B | NA |
| NOTE: Major declaration at the end of first year is not accepted for international students. Students must also meet the requirements of English Language set by the university. Please refer to Section VIII (IV) below. |  |  |  |

## VIII. Requirements for GE Required Courses

(I) Science Module

| Course <br> Code | Course Name | $\begin{aligned} & \text { ? } \\ & \stackrel{0}{0} \\ & \text { O} \end{aligned}$ |  |  | $\begin{aligned} & \stackrel{\text { or }}{3} \\ & \hline \end{aligned}$ |  |  | 号 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MA101B | Calculus IA | 4 |  | 4 | 1/Fall | B | NA | MATH |
| MA102B | Calculus II A | 4 |  | 4 | 1/Spr | B | MA101B |  |
| MA107A | Linear Algebra A | 4 |  | 4 | 1/Fall | B | NA |  |
| PHY103B | General Physics B (I) | 4 |  | 4 | 1/Fall | B | NA | PHY |
| PHY105B | General Physics B (II) | 4 |  | 4 | 1/Spr | B | PHY103B |  |
| PHY104B | Experiments of Fundamental Physics | 2 | 2 | 4 | Spr/Fall | B | NA |  |
| BIO102B | Introduction to Life Science | 3 |  | 3 | Spr/Fall | B | NA | BIO |
| CS102B | Introduction to Computer Programming B | 3 | 1 | 4 | 1/Spr/Fall | B | NA | CSE |
| Total |  | 28 | 3 | 31 |  |  |  |  |

(II) Physical Education

| Course Code | Course Name |  |  | $\begin{aligned} & \vec{o} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$ |  |  | Dept. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GE131 | Physical Education I | 1 | 2 | Fall | C | NA | PE Center |
| GE132 | Physical Education II! | 1 | 2 | Spr | C | NA |  |
| GE231 | Physical Education III | 1 | 2 | Fall | C | NA |  |
| GE232 | Physical Education IV | 1 | 2 | Spr | C | NA |  |
| GE331 | Physical Education V | 0 | 2 | Fall | C | NA |  |
| GE332 | Physical Education VI | 0 | 2 | Spr | C | NA |  |
| Total |  | 4 | 12 |  |  |  |  |
| GE131, GE132, GE231, GE232, GE331, GE332 are required PE courses offered by Center For Physical Education. Students are required to select a specific sport program each semester. Student who meets the exemption conditions stated in "SUSTech Physical Education Course Exemption Regulation" can apply for exemption from GE331 and GE332. |  |  |  |  |  |  |  |

(III) Chinese Languages \& Culture

| Course Code | Course Name | $\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{2}{7} \end{aligned}$ |  | $\begin{aligned} & \text { - } \\ & \stackrel{\text { D }}{3} \end{aligned}$ |  |  | $\begin{aligned} & \text { Do } \\ & \stackrel{0}{7} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLE008 | Elementary Chinese I | 2 | 4 | 1/Fall | B | NA | CLE |
| CLE009 | Elementary Chinese II | 2 | 4 | 1/Spr | B | CLE008 |  |
| CLE027 | Intermediate Chinese I | 2 | 4 | 2/Fall | B | CLE009 |  |
| CLE028 | Intermediate Chinese II | 2 | 4 | 2/Spr | B | CLE027 |  |
| CLE031 | Advanced Chinese I | 2 | 4 | 3/Fall | B | CLE028 |  |
| CLE032 | Advanced Chinese II | 2 | 4 | 3/Spr | B | CLE031 |  |
| CLE033 | Chinese Culture | 2 | 2 | Spr/Fall | B/E | NA | $\begin{gathered} \text { CLE/ } \\ \text { HUM/ } \\ \text { SSC } \\ \hline \end{gathered}$ |
| CLE034 | Chinese History | 2 | 2 | Spr/Fall | B/E | NA |  |
|  | Total | 16 | 28 |  |  |  |  |

## (IV) English Language

Students will undertake the English Placement Test and be placed into three levels according to the result of the test and their performance in the National College Entrance Exam. Students at different levels are required to take the courses with a different credit value in total.

Level A: 8 credits; SUSTech English III, English for Academic Purposes and 2-credit CLE
elective course
Level B: 12 credits; SUSTech English II, SUSTech English III, English for Academic Purposes, and 2-credit CLE elective course

Level C: 14 credits; SUSTech English I, SUSTech English II, SUSTech English III, and English for Academic Purposes.

## List of English Language Courses

| Course <br> Code | Course Name | $\begin{aligned} & \text { 융 } \\ & \stackrel{0}{7} \end{aligned}$ |  |  |  | Dept | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLE021 | SUSTech English I | 4 | 4 | E | NA | CLE | Required |
| CLE022 | SUSTech English II | 4 | 4 | E | CLE021 |  |  |
| CLE023 | SUSTech English III | 4 | 4 | E | CLE022 |  |  |
| CLE030 | English for Academic Purposes | 2 | 2 | E | CLE023 |  |  |
| 1 | (at least one 2-credit CLE elective course) | 2 | 2 | E | CLE030 |  | Level A \& B <br> Required |

## IX Requirements for GE Elective Courses

(I) Students are required to complete 4 credits for the Humanities Module and Social Sciences Module respectively, and 2 credits for the Music and Art Module. (Information about the available courses and the instruction language will be announced before the course selection session)
(II) Students are required to complete at least 3 credits from the following courses for the

Science Module.

| Course Code | Course Name | $\begin{aligned} & \text { 융 } \\ & \stackrel{2}{7} \end{aligned}$ |  |  |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH101B | General Chemistry B | 3 |  | 3 | $\begin{gathered} 1 / \mathrm{Spr} / \mathrm{F} \\ \text { all } \\ \hline \end{gathered}$ | E | NA | CHEM |
| CS205 | C/C++ Program Design | 3 | 1 | 4 | 1/Spr | E | NA | CSE |
|  | Total | 6 | 1 | 7 |  |  |  |  |

## X. Major Course Arrangement

Table 1: Major Required Course (Foundational and Core Courses)

|  | $\begin{aligned} & \text { Course } \\ & \text { Code } \end{aligned}$ | Course Name | $\begin{aligned} & \text { 융 } \\ & \stackrel{\text { ² }}{7} \end{aligned}$ |  |  | $\stackrel{\rightharpoonup}{\stackrel{\text { D }}{3}}$ |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MA213-16 | Mathematical Analysis | 5 |  | 4 | Fall | 2/Fall | B | MA102B | MATH |
|  | MA215 | Probability Theory | 4 |  | 3 | $\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 1/Spr or } \\ \text { 2/Fall } \end{gathered}$ | B | MA102a |  |
|  | MA204 | Mathematical Statistics | 3 |  | 3 | $\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$ | 2/Fall or 2/Spr | B | MA215 |  |
|  |  | Total | 12 | 0 | 10 |  |  |  |  |  |
|  | MA201a | Ordinary Differential Equations A | 4 |  | 3 | Spr | 2/Spr | E | MA203a and (MA109/MA111/ MA121) | MATH |
|  | MA208 | Applied Stochastic Processes | 3 |  | 3 | Spr | 2/Spr | E | MA203a and MA215 and (MA109/MA111/ MA121) |  |
|  | MA329 | Statistical Linear Models | 3 |  | 3 | Fall | 3/Fall | E | MA204 | STAT |
|  | MA308 | Statistical Computation and Software | 3 |  | 3 | Fall | 3/Fall | B | MA204 |  |
|  | MA309 | Time Series Analysis | 3 |  | 3 | Fall | 3/Fall | B | MA204 |  |
|  | MA304 | Multivariate Statistical Analysis | 3 |  | 3 | Spr | 3/Spr | B | MA204 |  |
|  | MA409 | Statistical Data Analysis with SAS | 3 |  | 3 | Spr | 3/Spr | B | MA329 |  |
|  |  | Total | 22 | 0 | 21 |  |  |  |  |  |
| $\begin{aligned} \\ \hline \end{aligned}$ | STA490 | Undergraduate Thesis / Project | 8 | 8 | 4 | Spr | 4/Spr | B | NA | STAT |
|  | STA480 | Research Projects** | 2 | 2 | 2 | NA | NA | B | NA |  |
|  | STA470 | Internship** | 2 | 2 | 16 | Smr | Summer | NA | NA |  |
|  |  | Total | 10 | 12 | 22 |  |  |  |  |  |
|  |  | Total | 44 | 12 | 53 |  |  |  |  |  |
| NOTE: ** Students must choose a research innovation project (including various scientific research activities, scientific and technological innovation projects, awards of provincial and above competitions, publications, domestic or foreign advanced studies, participation in a certain number of seminars, etc., credits need to be recognized by the department) or an internship. Students can choose to complete the research innovation projects or internship in any semester after the first year. The minimum requirement for internship is 4 weeks. |  |  |  |  |  |  |  |  |  |  |

Table 2: Major Elective Courses

| Course Code | Course Name |  |  |  | $\frac{\overrightarrow{\mathbf{D}}}{\overline{3}}$ |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MA109/MA11 1/MA121 | Advanced Linear Algebra/ Advanced Linear Algebra II/ <br> Advanced Linear Algebra II (H) | 4 |  | 4 | Spr | 1/Spr | E | MA107A | MATH |
| CS203B | Data Structures and Algorithm Analysis B | 3 | 1 | 4 | Fall | 2/Fall | E | CS205 | CSE |
| STA217 | Introduction to Data Science | 3 |  | 3 | Fall | 2/Fall | E | MA102a/ MA102B | STAT |
| MA205 | Discrete Mathematics | 3 |  | 3 | Spr | 2/Spr | B | $\begin{gathered} \hline \text { MA203a/ } \\ \text { MA213 } \end{gathered}$ | MATH |
| MA206 | Mathematical Modeling | 3 |  | 3 | Spr | 2/Spr | E | MA201al <br> MA230/ <br> MA201b | MATH |
| MA214/ <br> MA219 | Abstract Algebra/ Abstract Algebra (H) | 3 |  | 3 | Spr | 2/Spr | E | MA109/MA 111/MA121 | MATH |
| $\begin{aligned} & \hline \text { MA202/ } \\ & \text { MA232 } \\ & \hline \end{aligned}$ | Complex Analysis/ Complex Analysis (H) | 3 |  | 3 | Spr | 2/Spr | E | $\begin{gathered} \hline \text { MA203a/ } \\ \text { MA213-16 } \end{gathered}$ | MATH |
| MA322 | Life Insurance Actuarial Science | 3 |  | 3 | Spr | 2/Spr | B | MA215/ MA212 | MATH |
| STA201 | Operation Research and Optimization | 3 |  | 3 | Spr | 2/Spr | E | MA107A | STAT |
| MAS221 | The Basic Principle of Statistical Learning | 2 |  | 8 | Smr | 2/Smr | E | MA215/ MA212 | MATH |
| MA228 | Nonlife actuarial models | 3 |  | 3 | Fall | 3/Fall | E | MA215/ MA212 | MATH |
| MA303 | Partial Differential Equations | 3 |  | 3 | Fall | 3/Fall | E | MA201al MA201b | MATH |
| MA301 | Real Analysis | 3 |  | 3 | Fall | 3/Fall | E | $\begin{gathered} \hline \text { MA203a/ } \\ \text { MA213-16 } \end{gathered}$ | MATH |
| MA305 | Numerical Analysis | 3 |  | 3 | Fall | 3/Fall | B | $\begin{gathered} \hline \text { MA203a/ } \\ \text { MA213-16 } \end{gathered}$ | MATH |
| MAT7035 | Computational Statistics | 3 |  | 3 | Fall | 3/Fall | E | MA204 | STAT |
| MA314 | Sample Surveys | 3 |  | 3 | Spr | 3/Spr | B | MA204/ MA212 | MATH |
| MA333 | Introduction to Big Data Science | 3 |  | 3 | Spr | 3/Spr | B | MA215/ <br> MA212 | MATH |
| MAT7104 | Bayesian Statistics | 3 |  | 3 | Spr | 3/Spr | B | MA329 | STAT |
| MA417 | Nonparametric Statistics | 3 |  | 3 | Spr | 3/Spr | E | MA212/ MA204 | STAT |
| MAT7101 | Generalized Linear Models | 3 |  | 3 | Spr | 3/Spr | E | MA329 | STAT |
| MAT7102 | Selected Research Topics in Statistics | 3 |  | 3 | Spr | 3/Spr | E | MA204 | STAT |
| STA404 | Network Science and Computing | 3 |  | 3 | Spr | 3/Spr | E | MA204 | STAT |
| MA325 | Numerical Solution of Partial Differential Equations | 3 |  | 3 | Spr | 3/Spr | E | MA303 | MATH |
| MAT7002 | Measure Theory and Integration | 3 |  | 3 | Fall | 4/Fall | E | MA302 | MATH |
| MAT8031 | Advanced Statistics | 3 |  | 3 | Fall | 4/Fall | B | MA204 | STAT |


| CS405 | Machine Learning | 3 | 1 | 4 | Fall | 4/Fall | C | MA107A and MA212 | CSE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MA405 | Survival Analysis | 3 |  | 3 | Fall | 4/Fall | E | MA329 | STAT |
| MAT8011 | Advanced Probability | 3 |  | 3 | Fall | 4/Fall | E | MA329 | MATH |
| MAT7100 | Statistical Deep Learning | 3 |  | 3 | Fall | 4/Fall | E | MA329 | STAT |
| MAT7029 | Stochastic Analysis | 3 |  | 3 | Spr | 4/Spr | E | MA215 and MA301 | MATH |
|  | Total | 90 | 3 | 99 |  |  |  |  |  |

Note:

1. Students are required to complete 24 credits for the Major Elective Courses.
2. All major elective courses offered by the Department of Statistics can be certified as "Major Elective Courses" credits of the Statistics major including graduate courses that are open to undergraduates.

Table 3: Overview of Practice-Based Courses

| Course <br> Code | Course Name |  |  |  | $\begin{aligned} & \overrightarrow{\text { D }} \\ & \vdots \end{aligned}$ |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STA470 | Internship | 2 | 2 | 16 | Smr | Smr | NA | NA | STAT |
| STA480 | Research Projects | 2 | 2 | 2 | NA | NA | B | NA | STAT |
| STA490 | Undergraduate Thesis / Project | 8 | 8 | 4 | Spr | 4/Spr | B | NA | STAT |
| CS102B | Introduction to Computer Programming B | 3 | 1 | 4 | $\begin{gathered} \hline \text { Spr/F } \\ \text { all } \end{gathered}$ | 1/Spr/Fall | B | NA | CSE |
| MA207 | Mathematical Experiments | 3 | 1 | 4 | Fall | 2/Fall | E | MA203a | MATH |
| MA110 | MATLAB Programming and Application | 3 | 1 | 4 | Spr | 2/Spr | E | NA | MATH |
| CS205 | $\begin{gathered} \text { C/C++ Programming } \\ \text { Design } \end{gathered}$ | 3 | 1 | 4 | Spr | 1/Spr | E | NA | CSE |
| CS203B | Data Structures and Algorithm Analysis B | 3 | 1 | 4 | Fall | 2/Fall | E | CS205 | CSE |
| CS405 | Machine Learning | 3 | 1 | 4 | Fall | 4/Fall | B | MA107A and MA212 | CSE |
| PHY104B | Experiments of Fundamental Physics | 2 | 2 | 4 | $\begin{gathered} \text { Spr/F } \\ \text { all } \end{gathered}$ | 1/Spr/Fall | B | NA | PHY |
| Total |  | 32 | 20 | 49 |  |  |  |  |  |

Table 4: Overview of Course Hours and Credits

| Course Category | Total Course <br> Hours | Total Credits | Credit <br> Requirements | Percentage of the <br> Total $^{*}$ |
| :---: | :---: | :---: | :---: | :---: |
| General Education (GE) Required <br> Courses (not including English <br> courses) | 800 | 50 | 48 | $37.21 \%$ |
| General Education (GE) Elective <br> Courses |  | 13 | $10.08 \%$ |  |
| Major Foundational Courses | 192 | 12 | 12 | $9.30 \%$ |
| Major Core Courses | 352 | 22 | 22 | $17.05 \%$ |
| Major Elective Courses | 1440 | 90 | 24 | $18.60 \%$ |
| Research Projects, Internship <br> and Undergraduate Thesis/Projects |  | 32 | 10 | $7.75 \%$ |
| Total <br> (not including English courses) |  | 129 | $100 \%$ |  |

* Percentage of the total= Credit requirements of each line / Total credit requirements

Curriculum Structure of the Program of Statistics for International Students (Only include Statistical Major Courses)

| Fundamental and Core Courses |  |  | Elective Courses |
| :---: | :---: | :---: | :---: |
| First Year | Second Year | Third Year | Third/Fourth Year |
| Fall | Fall | Fall | Fall |
|  |  | Times Series Analysis | Computational Statistics |
| Calculus I A | Mathematical Analysis |  | Real Analysis |
| Linear Algebra A | Probability Theory | Statistical Computation and Software | Survival Analysis |
|  |  | Statistical Linear Models | Advanced Statistics |
|  |  |  | Statistical Deep Learning |
|  |  |  |  |
| Spring | Spring | Spring | Spring |
|  | Mathematical Statistics | Multivariate Statistical Analysis | Introduction to Big Data Science |
| Calculus II A |  |  | Survey Sampling |
|  | Ordinary Differential Equations |  | Bayesian Statistics |
| Advanced Linear Algebra |  | Statistical Data Analysis with SAS | Generalized Linear Models |
|  | Applied Stochastic Processes |  | Network Science and Computing |
|  |  |  | Selected Research Topics in Statistics |

