Department of Mechanical and Energy Engineering

Program of Robotics Engineering for International Students (2020)

I. Introduction

Robotics Engineering is an interdisciplinary program that integrates the learning of mechanical, electronic and computer technologies. The aim of the program is to cultivate leading talents with solid scientific foundation, excellent innovative practical ability and broad international vision, who are good at comprehensive application of theories and methods of robotics and related disciplines, and who can solve engineering problems with the latest scientific development for the future. In terms of research, its directions cover industrial robots, robot software, bionic robots, medical robots, field robots, microrobots and emerging frontier areas of science and technology such as artificial intelligence, autonomous system, service future demand for the forefront of technology and basic industries, supporting the national economic development plan and Shenzhen's local informatization, intellectualization and manufacturing comprehensive upgrade a long-term positive impact.

II. Objectives and Learning Outcomes

This program bases its objectives on the future development of robotics engineering and serves the human resource demand of the field in the background of the national mid and long term development planning. The program is committed to fostering students with a solid scientific foundation, excellent innovation capacity, broad international vision, integrated use of robotics theories and related disciplines, and skills of solving the engineering problems for the future with the latest science development.

Graduates of the program will be equipped with the following knowledge, capability, and accomplishment.

1. Solid and broad basic theoretical knowledge (including mathematics, physics, machinery, automation, electronics, computer, etc.), as well as subject knowledge in robot engineering;
2. Master the robotics theories, research and engineering design methods of robot engineering, and have a good knowledge of engineering technology and frontier development of the industry. Robotics Engineering is a multidisciplinary and interdisciplinary program and foster its students to become leading cross-disciplinary talents for the future.
3. Develop students with rigorous and practical attitude toward science and research, engagement in pursuing excellence, a strong sense of social responsibility and mission, and good communication skills;
4. Develop students with innovative thinking and the ability to independently identify, understand and solve problems in the real world with the application of robotics via the learning of the program;
5. Develop the international outlook and skills of communication and collaboration with international professionals of the related industry.

III. Study Length and Graduation Requirements

Study length: 4 years. A 3-6 years of flexible study length is applied.
Degree conferred: Bachelor of Engineering for students fulfilling the requirements of the undergraduate program.

The minimum credit requirement for graduation: 130 credits (not including English courses);

Category	Module	Minimum Credit Requirement
$\begin{gathered} \text { General Education (GE) } \\ \text { Required Courses } \\ (48 \text { creidts) } \\ \hline \end{gathered}$	Science	28
	Physical Education	4
	Chinese Languages \& Culture	16
General Education (GE) Elective Courses (16 creidts)	Humanities	4
	Social Sciences	4
	Arts	2
	Science	6
Major Course (66 creidts)	Major Foundational Courses	26
	Major Core Courses	12
	Major Elective Courses	15
	Research Projects, Internship and Undergraduate Thesis / Projects	13
Total (not including English courses)		130

IV. Discipline

Robotics Engineering (080803T)

V. Main Courses

Fundamental Courses of Engineering: Fundamentals of Electric Circuits, CAD and Engineering Drawing,, Engineering Mechanics I - B, Mechanics of Materials, Signals and Systems, Probability and Statistics, Fundamentals of Control Engineering, etc.

Core Courses of Robotics Engineering: Fundamentals of Machine Design, Robot Modeling and Control, Actuation System for Robotics, Sensors and Actuators, Pattern Recognition, Machine Learning, Artificial Intelligence, Mechatronic Systems, etc.

Special Courses of Robotics Engineering: Microrobotics, Walking Robot, Soft Robot, Collaborative Robot Learning, Microfabrication and Microsystems, Autonomous Robotic Systems, etc.

VI. Practice-Based Courses

Engineering Training, Experiments, Course Projects, Practice I \& II, Innovation and Entrepreneurship, Senior Project, etc.

VII. Pre-requisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
Declare major at the end of First Year	MA101B	Calculus I A	NA
	MA102B	Calculus II A	MA101B
	PHY103B	General Physics B (I)	NA
	PHY105B	General Physics B (II)	PHY103B
	MA107A	Linear Algebra A*	NA
	CS102B	Introduction to Computer Programming B*	NA
	CH101B	General Chemistry B*	NA
	Notes: 1. At least one of those four courses (marked with *) should be passed. 2. The above courses are the minimum requirements. The high-level courses are also acceptable.		
Declare major at the end of Second Year	MA102B	Calculus II A	MA101B
	PHY105B	General Physics B (II)	PHY103B
	MA107A	Linear Algebra A	NA
	CS102B	Introduction to Computer Programming B	NA
	EE104	Fundamentals of Electric Circuits	MA101B, MA107B
	MAE203B	Engineering Mechanics I-Statics and Dynamics	MA107B
	EE205	Signals and Systems	NA
	ME307	Fundamentals of Control Engineering	EE104
	Notes: The above courses are the minimum requirements. The high-level courses are also acceptable.		

VIII. Requirements for GE Required Courses

(I) Science Module

| Course |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code |\quad Course Name

(II) Physical Education

Course Code	Course Name	$\begin{aligned} & \text { ? } \\ & \stackrel{0}{\infty} \\ & \stackrel{\rightharpoonup}{\hbar} \end{aligned}$		$\stackrel{-1}{\text { ¢ }}$			Dept.
GE131	Physical Education I	1	2	Fall	C	NA	PE Center
GE132	Physical Education II!	1	2	Spr	C	NA	
GE231	Physical Education III	1	2	Fall	C	NA	
GE232	Physic Education IV	1	2	Spr	C	NA	
GE331	Physical Education V	0	1	Fall	C	NA	
GE332	Physical Education VI	0	1	Spr	C	NA	
GE431	Physical Education VII	0	1	Fall	C	NA	
GE432	Physical Education VIII	0	1	Spr	C	NA	
	Total	4	8				

Note: All physical education courses are general required courses. For Semester 1-4, each
course(GE131.GE132,GE231,GE232) counted as 1 credit ; for semester 5-8, (GE331.GE332,GE431,GE432) are extracurriculum courses without no credits, details can be referred to Physical Education Curriculum Program of Sustech.
(III) Chinese Languages \& Culture

(IV) English Language

Students will undertake the English Placement Test and be placed into three levels according to the result of the test and their performance in the National College Entrance Exam. Students at different levels are required to take the courses with a different credit value in total.

Level A: 6 credits; SUSTech English III, and English for Academic Purposes
Level B: 10 credits; SUSTech English II, SUSTech English III, and English for Academic Purposes
Level C: 14 credits; SUSTech English I, SUSTech English II, SUSTech English III, and English for Academic Purposes.

Course Code	Course Name	$\begin{aligned} & \text { 윻 } \\ & \stackrel{2}{7} \end{aligned}$				Dept
CLE021	SUSTech English I	4	4	E	NA	CLE
CLE022	SUSTech English II	4	4	E	CLE021	
CLE023	SUSTech English III	4	4	E	CLE022	
CLE030	English for Academic Purposes	2	2	E	CLE023	

IX Requirements for GE Elective Courses

(I) Students are required to complete 4 credits for the Humanities Module and Social Sciences Module respectively, and 2 credits for the Music and Art Module. (Information about the available courses and the instruction language will be announced before the course selection session)
(II) Students are required to complete 6 credits for Science Module

Course Code	Course Name	$\begin{aligned} & \text { O } \\ & \stackrel{\text { D}}{\#} \end{aligned}$			$\begin{aligned} & \stackrel{\text { No }}{3} \\ & \hline \end{aligned}$			蒿
BIO102B	Introduction to Life Science	3		3	1/Spr/Fall	E	NA	BIO
CS205	C/C++ Program Design	3	1	4	2/Fall	B	NA	CSE
EE201-17	Analog Circuits	3		3	2/Fall	B	PHY105B, EE104	EE
EE202-17	Digital Circuits	3		3	2/Spr	B	PHY105B, EE201-17	EE
MA201b	Ordinary Differential Equation B	4	1	5	2/Spr	B	MA102B	MA
MA206	Mathematics Modelling	3	1	4	2/Spr	B	MA201b	MA
	Total	19	3	22				

X. Major Course Arrangement

Table 1: Major Required Course (Foundational and Core Courses)

	Course Code	Course Name								$\begin{aligned} & \text { 䓦 } \end{aligned}$
	EE104	Fundamentals of Electric Circuits	2		2	Spr	1/Spr	C/E	MA101B, MA107B	EE
	ME102	CAD and Engineering Drawing	3	$\begin{gathered} 1 . \\ 5 \end{gathered}$	4.5	Fall/ Spr/ Smr	1/Smr	B/E	NA	MEE
	ME103	Awareness Practice of Manufacturing Engineering	3	2	5	Fall/ Spr /Smr	2/Fall	B/E	NA	MEE
	$\begin{gathered} \text { MAE20 } \\ 3 B \end{gathered}$	Engineering Mechanics IStatics and Dynamics	3		3	Fall	2/Fall	E	MA107B	MAE
	EE205	Signals and Systems	3	1	4	Fall	2/Fall	B/E	MA101B	EE
	MA212	Probability and Statistics	3	1	4	Fall	2/Fall	E	MA102B	MA
	$\begin{gathered} \hline \text { MAE20 } \\ 2 \end{gathered}$	Mechanics of Materials	3		3	Fall	2/Fall	E	MA107A, MA102B	MAE
	ME307	Fundamentals of Control Engineering	3	$\begin{aligned} & \hline 0 . \\ & 5 \\ & \hline \end{aligned}$	3.5	$\begin{aligned} & \text { Fall/ } \\ & \text { Spr } \end{aligned}$	2/Spr	B/E	EE104, MA201b	MEE
	ME303	Fundamentals of Machine Design	3	1	4	$\begin{aligned} & \text { Fall/ } \\ & \text { Spr } \end{aligned}$	2/Spr	B/E	MAE203B, ME102, MAE202	MEE
		Total	26	7	33					
$\ddot{\oplus}$	ME331	Robot Modeling and Control	3		3	Fall	3/Fall	B/E	MAE203B	MEE
	$\begin{gathered} \text { EE423- } \\ 14 \end{gathered}$	Pattern Recognition*	3	1	4	Fall	3/Fall	B	$\begin{aligned} & \text { MA107A, } \\ & \text { EE205, } \\ & \text { MA212 } \\ & \hline \end{aligned}$	EE
	CS303B	Artificial Intelligence B^{*}	3	1	4	Fall	3/Fall	B	CS101A, CS203B, MA212	CS
	CS405	Machine Learning*	3	1	4	Fall	4/Fall	B	MA107A, MA212	CS
	ME321	Sensors and Actuators**	3	1	4	Spr	2/Spr	E	EE104	MEE
	ME322	Actuation System for Robotics**	3	1	4	Fall	3/Fall	E	MA102B	MEE
	ME333	Mechatronic Systems	3	1	4	Fall/ Spr	3/Spr	E	ME331	MEE
		Total	21	6	27					
$\begin{aligned} & \text { To } \\ & \text { 啇 } \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	ME494	Practice I	1	1	2					MEE
	ME495	Practice II	2	2	4					MEE
	ME496	Innovation and	2	2	4					MEE

		Entrepreneurship: Practice and Principles								

Table 2: Major Elective Courses

Course Code	Course Name	$\begin{aligned} & \text { 울 } \\ & \stackrel{\text { Da }}{7} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \underset{3}{ } \end{aligned}$				\%
ME232	Prolegomenon to Robotics	3		3	Spr	1/Spr	E	NA	MEE
ME332	Robot Operating System	3	1	4	Spr	2/Spr	B	CS102B	MEE
CS203B	Date Structure and Algorithm Analysis B	3	1	4	Fall	3/Fall	B	CS101A	CS
ME313	Product Design Practice	3	1	4	Spr	3/Spr	B	$\begin{gathered} \text { ME303 } \\ \text { or } \\ \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
ME312	Advanced Kinematics and Dynamics of Mechanisms	3		3	Spr	3/Spr	B	$\begin{aligned} & \text { ME306 } \\ & \text { or } \\ & \text { ME331 } \end{aligned}$	MEE
ME301	Dynamics and Vibration*	3	1	4	$\begin{aligned} & \hline \text { Fall/ } \\ & \text { Spr } \end{aligned}$	3/Spr	E	MAE203B, MA201b	MEE
ME302	Fundamentals of Manufacturing	3		3	Fall/ Spr	3/Spr	E	ME103, ME303	MEE
CS308	Computer Vision	3	1	4	Spr	3/Spr	B	无	CS
ME426	Fundamentals of Engineering Optimization	3		3	Spr	3/Spr	E	MA102B, MA107B	MEE
ME334	Microrobotics	3		3	Spr	3/Spr	E	ME307	MEE
ME335	Microfabrication and Microsystems	3		3	Spr	3/Spr	E	PHY105B	MEE
ME336	Collaborative Robot Learning	3	1	4	Spr	3/Spr	E	$\begin{gathered} \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
ME434	Walking Robot	3	0.5	3.5	Spr	3/Spr	B	$\begin{gathered} \hline \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
ME314	Finite Element Theory and Its Engineering Applications	3		3	Spr	3/Spr		MAE202, MA107A	MEE
ME435	Soft Robot	3		3	Fall	4/Fall	B	ME303	MEE
ME424	Modern Control and Estimation	3		3	Fall	4/Fall	E	ME307	MEE
$\begin{gathered} \text { MEE511 } \\ 5 \end{gathered}$	Autonomous Robitc Systems	3		3	Fall	4/Fall	E	MA107A, MA212	MEE
CS401	Intelligent Robotics	3	1	4	Spr	4/Spr	E	CS101A, CS203, CS202	CS
	Total	54	7.5	61.5					
Notes: 1. The minimum of 9 credits is required for the above courses. 2. In addition, students are required to take optional courses under the guidance of tutors, with a minimum of 6 credits. 3. *MAE314 Theory of Vibration can be identified as ME301 Dynamics and Vibration.									

Table 3: Overview of Practice-Based Courses

Course Code	Course Name	$\begin{aligned} & \text { 잏 } \\ & \stackrel{0}{7} \end{aligned}$			$\stackrel{\text { ¢ }}{3}$				帝
ME102	CAD and Engineering Drawing	3	1.5	4.5	Fall/ Spr/ Smr	1/Smr	B/E	NA	MEE
ME103	Awareness Practice of Manufacturing Engineering	3	2	5	$\begin{gathered} \hline \text { Fall// } \\ \mathrm{Spr} \\ \text { /Smr } \end{gathered}$	2/Fall	B/E	NA	MEE
EE205	Signals and Systems	3	1	4	Fall	2/Fall	B/E	MA101B	EE
MA212	Probability and Statistics	3	1	4	Fall	2/Fall	E	MA102B	MA
ME307	Fundamentals of Control Engineering	3	0.5	3.5	$\begin{aligned} & \hline \text { Fall/ } \\ & \mathrm{Spr} \\ & \hline \end{aligned}$	2/Spr	B/E	$\begin{aligned} & \hline \text { EE104, } \\ & \text { MA201b } \end{aligned}$	MEE
ME303	Fundamentals of Machine Design	3	1	4	Fall/ Spr	2/Spr	B/E	MAE203B, ME102, MAE202	MEE
$\begin{gathered} \text { EE423-1 } \\ 4 \end{gathered}$	Pattern Recognition	3	1	4	Fall	3/Fall	B	MA107A, EE205, ,MA212	EE
CS303B	Artificial Intelligence B	3	1	4	Fall	3/Fall	B	CS101A, CS203B, MA212	CS
CS405	Machine Learning	3	1	4	Fall	4/Fall	B	MA107A, MA212	CS
ME321	Sensors and Actuators	3	1	4	Spr	2/Spr	E	EE104	MEE
ME322	Actuation System for Robotics	3	1	4	Fall	3/Fall	E	MA102B	MEE
ME333	Mechatronic Systems	3	1	4	$\begin{aligned} & \hline \text { Fall// } \\ & \mathrm{Spr} \\ & \hline \end{aligned}$	3/Spr	E	ME331	MEE
ME332	Robot Operating System	3	1	4	Spr	2/Spr	B	CS102B	MEE
CS203B	Date Structure and Algorithm Analysis B	3	1	4	Fall	3/Fall	B	CS101A	CS
ME313	Product Design Practice	3	1	4	Spr	3/Spr	B	$\begin{gathered} \text { ME303 } \\ \text { or } \\ \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
ME301	Dynamics and Vibration*	3	1	4	$\begin{aligned} & \hline \text { Fall/ } \\ & \mathrm{Spr} \\ & \hline \end{aligned}$	3/Spr	E	MAE203B, MA201b	MEE
CS308	Computer Vision	3	1	4	Spr	3/Spr	B	无	CS
ME336	Collaborative Robot Learning	3	1	4	Spr	3/Spr	E	$\begin{gathered} \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
ME434	Walking Robot	3	0.5	3.5	Spr	3/Spr	B	$\begin{gathered} \text { ME306 } \\ \text { or } \\ \text { ME331 } \end{gathered}$	MEE
CS401	Intelligent Robotics	3	1	4	Spr	4/Spr	E	CS101A, CS203, CS202	CS

ME494	Practice I	1	1	2					MEE
ME495	Practice II	2	2	4					MEE
ME496	Projects of Innovation and Entrepreneurship	2	2	4					MEE
ME493	Senior Project	8	8	16					MEE
	Total	73	33.5	10.65					

Table 4: Overview of Course Hours and Credits

Course Category	Total Course Hours	Total Credits	Credit Requirements	Percentage of the Total *
General Education (GE) Required Courses (not including English courses)		48	36.92%	
General Education (GE) Elective Courses		16	12.31%	
Major Foundational Courses	528	26	26	20.00%
Major Core Courses	432	21	12	9.23%
Major Elective Courses	1000	54	15	11.54%
Research Projects, Internship and Undergraduate Thesis/Projects	416	13	13	10.00%
Total (not including English courses)			130	

* Percentage of the total $=$ Credit requirements of each line / Total credit requirements

Curriculum Structure of Robotics Engineering

Notes*: Elective Courses only list some courses, all courses are detailed in the program.

