Department of Materials Science and Engineering

Program of Electronic and Photonic Materials and Devices for International Students (2023)

I. Introduction

The major of Electronic and Photonic Materials and Devices is based on the principles of materials science and engineering, chemistry and physics, and integrates with electronics, photons, integrated circuits, information, and other disciplines. It focuses on various materials related to electronic science and engineering, information science and engineering, including semiconductor materials, photons and electromagnetic materials, functional and sensing materials, quantum information materials, and other core and key materials required for information processing and transmission. And materials' structure characterization/evaluation, performance test, process technology, manufacturing equipment, and device application. Cultivate new engineering talents with basic knowledge and application ability in the fields of materials and electronics, photonics, information, etc.

Academic subject areas: Materials
Program code: 080418T

II. Objectives and Learning Outcomes

The major of Electronic and Photonic Materials and Devices will cultivate high-quality science and technology talents with firm theoretical knowledge of Electronic and Photonic Materials and Devices, abilities of mastering frontier materials’ R\&D and characterization techniques, and capabilities of utilizing English and computer technology very well for high-tech R\&D in interdisciplinary fields. These trained students possess the capability not only for research in the fields of materials and electronics, photonics, and information, for designing and developing new materials and devices, for teaching and managing, but also for practice innovation, cooperation, and leadership. These graduates can not only engage in conventional material industrial production, new materials creation, and development of new processes and technologies, but also continue their postgraduate studies in the fields of materials, electronics, photonics and
information, and serve in the research, development and management in top-ranked corporations, scientific research institutes, colleges, and government.

III. Study Length, Degree, and Graduation Requirements

1. Study length: 4 years.
2. Degree conferred: Students who complete and meet the degree requirements of the undergraduate program will be awarded a bachelor's degree in engineering.
3. The minimum credit requirement for graduation: 161 credits. The specific requirements are as follows.

Module		Category	Minimum Credit Requirement
General Education Courses	Chinese Language and Culture Module	Chinese Language and Culture	16
	Arts and Physical Education Module	Physical Education	4
		Arts	2
	Competence Development Module	Computer Programming	3
		Writing	2
		Foreign Languages	14
	Humanities and Social Sciences Module	Humanities	6
		Social Sciences	
		Chinese Studies	2
	Mathematics and Natural Sciences Module	Mathematics	12
		Physics	10
		Chemistry	3
		Geoscience + Life Science	3
	GE to Majors Bridging Module	Introduction to Majors	2
Major Courses	Major Required Courses	Major Foundational Courses	24
		Major Core Courses	20
		Practice-based Learning (Undergraduate Thesis, Internships, Research projects, etc.)	16
	Major Elective Courses	Major Elective Courses	22
Total			161

Note: please see the General Education Requirement for more details on Chinese Language and Culture Module, Arts and Physical Education Module, Competence Development Module (Foreign Languages \& Writing) , Humanities and Social Sciences Module, and GE to Majors Bridging Module.
IV. Course Requirements for the Mathematics and Natural Sciences Module and Computer

Programming

Course Category	Course Code	Course Name	Credits	Terms	Prerequisite	Dept.
Mathematics	MA117	Calculus I	4	1 Fall	None	MATH
	MA127	Calculus II	4	1 Spring	Calculus I	
	MA113	Linear Algebra	4	$\begin{gathered} \hline 1 \text { Spring \& } \\ \text { Fall } \\ \hline \end{gathered}$	None	
Physics	PHY105	College Physics I	4	1 Fall	None	PHY
	PHY106	College Physics II	4	1 Spring	College Physics I	
	PHY104B	Experiments of Fundamental Physics	2	1-2 Spring \& Fall	None	
Chemistry	CH103/ CH105	General Chemistry/ Chemistry: the Central Science	4/3	$\begin{aligned} & \text { 1-2 Spring } \\ & \text { \& Fall } \end{aligned}$	None	CHEM
Geoscience + Life Science	BIO103/ BIO102B/ EOE100	Principles of Biology/ Introduction to Life Science/ Introduction to Earth Sciences	3	$\begin{aligned} & \text { 1-2 Spring } \\ & \text { \& Fall } \end{aligned}$	None	$\begin{gathered} \hline \text { DBIO, } \\ \text { ESS, } \\ \text { OCE, } \\ \text { ESE } \\ \hline \end{gathered}$
Computer Programming	CS109/ CS110/ CS111/ CS112/ CS113	Introduction to Computer Programming / Introduction to Java Programming / Introduction to C Programming / Introduction to Python Programming / Introduction to Matlab Programming	3	$\begin{aligned} & \text { 1-2 Spring } \\ & \text { \& Fall } \end{aligned}$	None	CSE

V. Prerequisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
Declare major at the end of the first academic year	MA117	Calculus I	None
	MA127	Calculus II	Calculus I
	MA113	Linear Algebra	None
	PHY105	College Physics I	None
	CH103/CH105	College Physics II	College Physics I
	General Chemistry/ Chemistry: the Central		
Science	None		
	None		

Notes: At least 5 of the above courses will be completed in the first year, and the results should be qualified. For Mathematics, students who have completed MA101a \& MA102a are not required to take MA117 \& MA127. For Physics, students who have completed PHY101 \& PHY102 are not required to take PHY105 \& PHY106.

MA117	Calculus I	None
MA127	Calculus II	Calculus I
MA113	Linear Algebra	None
PHY105	College Physics I	None
PHY106	College Physics II	College Physics I
PHY104B	Experiments of Fundamental Physics	None
CH103/CH105	General Chemistry/ Chemistry: the Central Science	None
$\begin{gathered} \text { BIO103/BIO102B/ } \\ \text { EOE100 } \\ \hline \end{gathered}$	Principles of Biology/ Introduction to Life Science/ Introduction to Earth Sciences	None
$\begin{gathered} \text { CS109/CS110/CS1 } \\ \text { 11/CS112/CS113 } \end{gathered}$	Introduction to Computer Programming/ Introduction to Java Programming/ Introduction to C Programming/ Introduction to Python Programming/ Introduction to Matlab Programming	None

Notes: All of the above courses should be completed in the second year, and the results should be qualified. For Mathematics, students who have completed MA101a \& MA102a are not required to take MA117 \& MA127. For Physics, students who have completed PHY101 \& PHY102 are not required to take PHY105 \& PHY106.

Note:

1. If the number of students entering a major at the end of the first academic year in the department is greater than or equal to the total number of the teaching-research faculty (PI) $* 2 * 60 \%$, all majors in the department may implement the prerequisites for major declaration at the end of the second academic year.
2. If the number of students entering a major at the end of the first academic year in the department is less than the total number of the teaching-research faculty (PI) $* 2 * 60 \%$, all majors in the department do not implement the prerequisites for major declaration at the end of the second academic year.
3. Suppose the number of students applying for a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), then the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).
4. For departments that do not implement prerequisites for major declaration at end of the second academic year, if the cumulative number of students applying for a major at the end of the second academic year and the number of students who have entered a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).

VI: Major Course Arrangement

Table 1: Major Required Courses
Program of Electronic and Photonic Materials and Devices

Course Category	Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
	MSE001	Fundamentals of Materials Science and Engineering*	3		2 Fall	PHY106 CH103/CH105	MSE
	MSE002	Experiments for Fundamentals of Materials Science and Engineering*	1	1	2 Fall	PHY106 CH103/CH105	MSE
	MSE205	Fundamentals of Circuits and Electronics	3		2 Fall	MA127 PHY106	MSE
	MSE203	Crystallography	2		2 Fall	None	MSE
	MSE207	Engineering Mathematical Physics	3		2 Fall	MA127 MA113	MSE
	MSE344	Applied Quantum Mechanics	3		2 Spring	PHY106	MSE
	MSE213	Mechanics of Materials B	3		2 Spring	None	MSE
	MSE335	Applied Solid State Physics	3		3 Fall	$\begin{aligned} & \text { MA127 } \\ & \text { PHY106 } \end{aligned}$	MSE
	MSE301	Materials Chemistry	3		3 Fall	MSE001 MSE002	MSE
		Total	24	1			
	Note: *Please choose MSE001 and MSE002 at the same semester.						
$$	MSE306	Materials Characterization Techniques	3		2 Spring	MSE001	MSE
	MSE209	Heat and Mass Transfer	3		2 Spring	$\begin{aligned} & \hline \text { MA127 } \\ & \text { PHY106 } \\ & \hline \end{aligned}$	MSE
	MSE333	Comprehensive Experiments of Electronic and Photonic Materials and Devices I	4	4	3 Fall	MSE001 MSE002	MSE
	MSE311	Thermodynamics of Materials	3		3 Spring	MSE001	MSE
	MSE337	Crystal Growth	3		3 Spring	MSE001	MSE
	MSE357	Comprehensive Experiments of Electronic and Photonic Materials and Devices II	4	4	3 Spring	MSE333	MSE
		Total	20	8			
	$\begin{array}{\|c\|} \hline \text { MSE470-1 } \\ 7 \\ \hline \end{array}$	Industrial Practice	4	4	3 Summer	None	MSE
	MSE492	Thesis (Graduation Project)*	12	12	4 Spring	None	MSE
		Total	16	16			
	Note: *Students who have completed Comprehensive Design I\&II (COE493 \& COE494) are not required to take the MSE492 Thesis (Graduation Project).						
Total			60	25			

Table 2: Major Elective Courses
Program of Electronic and Photonic Materials and Devices

Course Category	Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
	MSE407	Advanced Thin Film Technology	3		3 Fall	None	MSE
	MSE356	Electronic Information Materials and Devices	3		3 Fall	MSE001	MSE
	MSE339	Optical Materials and Devices	3		3 Spring	PHY106	MSE
	MSE310	Semiconducting Materials, Devices and Technology	3		3 Spring	None	MSE
	MSE349	Integrated Circuit Processing Technology	3		3 Spring	MSE001	MSE
	MSE404	Electronic Component Reliability and Failure Analysis	3		4 Fall	MSE306	MSE
	MSE409	Packaging Materials and Technology	3		4 Fall	MSE001	MSE
		Total	21				
	Note: At least 12 credits are required for Restricted Electives Courses.						
雨	MSE103	Magic Materials	1	1	1 Fall	None	MSE
	MSE313	Polymer Materials	3		2 Spring	MSE001	MSE
	MSE319	Physical Metallurgy A	3		3 Fall	$\begin{aligned} & \text { MSE001 } \\ & \text { MSE002 } \end{aligned}$	MSE
	MSE332	Fundamentals of Electrochemisty	3		3 Fall	None	MSE
	MSE317	Ceramic Materials	3		3 Fall	MSE001	MSE
	MSE352	The Fundamental of Plasma Technology	3		3 Fall	PHY106	MSE
	MSE413	3D Printing and Lase-based Additive Manufacturing	3		3 Fall	None	MSE
	MSE325	Functional Polymers	3		3 Fall	None	MSE
	MSE322	Composite Materials	3		3 Spring	None	MSE
	MSE320	Introduction to Photovoltaics and Photo-thermal	3		3 Spring	None	MSE
	MSE328	Physics of Materials	3		3 Spring	$\begin{gathered} \text { MA127 } \\ \text { MSE001 } \end{gathered}$	MSE
	MSE351	Principle of Sensors	3		3 Spring	PHY106	MSE
	MSE354	Introduction to Electron Photon Source	3		3 Spring	None	MSE
	MSE355	Information Storage Materials and Devices	3		3 Spring	MSE337	MSE
	MSE5019	Photonic Materials and Matematerials	3		3 Spring	None	MSE
	MSE410	Experiments of Circuit Design	2	2	4 Fall	MSE205	MSE
	MSE402	Lithographic Materials and Processing	3		4 Fall	None	MSE
	MSE408	Optoelectronic Materials and Device	3		4 Fall	None	MSE
	MSE480	Projects of Science and Technology Innovation	2	2	3-4 Fall	None	MSE
		Total	53	5			
	Note: At least 10 credits are required for Unrestricted Electives Courses.						

Table 3: Overview of Practice-based Learning
Program of Electronic and Photonic Materials and Devices

Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
MSE103	Magic Materials	1	1	1 Fall	None	MSE
MSE002	Experiments for Fundamentals of Materials Science and Engineering	1	1	2 Fall	PH103/CH105	MSE
MSE333	Comprehensive Experiments of Electronic and Photonic Materials and Devices I	4	4	3 Fall	MSE001 MSE002	MSE
MSE357	Comprehensive Experiments of Electronic and Photonic Materials and Devices II	4	4	3 Spring	MSE333	MSE
MSE410	Experiments of Circuit Design	2	2	4 Fall	MSE205	MSE
MSE480	Projects of Science and Technology Innovation	2	2	$3-4$ Spring \&	None	MSE
MSE470-17	Industrial Practice	4	4	3 Summer	None	MSE
MSE492	Thesis (Graduation Project)	12	12	4 Spring	None	MSE
	Total	$\mathbf{3 0}$	$\mathbf{3 0}$			

Electronic and Photonic Materials and Devices

