Department of Electrical and Electronic Engineering

Program of Optoelectronic Information Science and Engineering for

International Students (2022)

I. Introduction

Optoelectronic Information Science and Engineering is a comprehensive technology, which is composed of optics, optoelectronics, microelectronics and other technologies. It is a new cross-subject with strong practical application, and is widely used in the national economy and defense. The professional training includes the theoretical knowledge of optoelectronics, flat panel display, lighting, solar energy, optical design and optical communication technology. At the same time, English and computer application training are important. Graduated students will be engaged in the field of optoelectronic information, optical communication, photoelectric detection, optoelectronic devices, new display and lighting technology, new energy, and new technology research and development. They are also suitable for the research and development of optoelectronic devices and related high-tech disciplines, scientific research institutions, universities and institutions engaged in scientific research, development, teaching and management.

Academic subject area: Electronic Information; Program code: 080705

II. Objectives and Learning Outcomes

1. Objectives

Attributes that alumni of Optoelectronic Information Science and Engineering should demonstrate 3-5 years after graduation include 4 aspects. Alumni are:

Technical Skills: technically competent to conduct research and development in the industry and universities in the broad fields of Electronics and Information Engineering in general, and Communication Engineering in particular.

Engineering Ethos: able to think critically and creatively, able to use engineering principles to embrace challenging engineering and non-engineering problems encountered at work, able to

apply an analytic mindset, make informed decisions and able to provide innovative solutions.

Attitude: self-motivated with a desire for lifelong learning to adapt to the fast changing environment, able to operate with integrity and responsibility, having optimism and composure under tight schedule, and committed to make a positive impact on society locally and globally.

Leadership: effective communicators, well-prepared to advance towards leadership positions, able to capitalize the individual strengths of team members, and able to nurture the team to achieve goals.

2. Learning Outcomes

Student Outcomes (SOs) that prepare graduates to enter the professional practice of engineering:

- SO 1: an ability to identify, formulate, and solve complex engineering problems 1 by applying principles of engineering, science, and mathematics.
- SO 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
 - SO 3: an ability to communicate effectively with a range of audiences.
- SO 4: an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- SO 5: an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- SO 6: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- SO 7: an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- SO 8: knowledge of probability and statistics including applications, differential and integral calculus, sciences, engineering sciences, and computing science and application to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components.
- SO 9: knowledge and application of advanced mathematics, such as differential equations, linear algebra, and complex variables.
 - SO 10: knowledge and application of and appropriate laboratory experience in: geometrical

optics, physical optics, optical materials, and optical and/or photonic devices and systems.

III. Study Length, Degree, and Graduation Requirements

- 1. Study length: 4 years. The academic credit system of SUSTech allows flexible study years, but not less than 3 years or more than 6 years
- 2. Degree conferred: Students who complete and meet the degree requirements of the undergraduate program will be awarded a bachelor's degree in Engineering
- 3. The minimum credit requirement for graduation: 157 credits. The specific requirements are as follows.

	Module	Category	Minimum Credit Requirement
	Chinese Language and Culture Module	Chinese Language and Culture	16
	Arts and Physical Education	Physical Education	4
	Module	Arts	2
		Computer Programming	3
	Competence Development	Writing	2
General Education	Module	Chinese Studies	2
		Foreign Languages	14
Courses	Humanities and Social Sciences	Humanities	6
	Module	Social Sciences	6
		Mathematics	12
	Mathematics and Natural	Physics	10
	Sciences Module	Chemistry	3
		Biology	3
	Introduction to Majors Module	Introduction to Majors	2
		Major Foundational Courses	26
	Major Required Courses	Major Core Courses	15
Major Courses	ragor required courses	Practice-based Learning (Undergraduate Thesis, Internships.)	14
	Major Elective Courses	Major Elective Courses	23
	Total		157

Note: please see the General Education Requirement for more details on Chinese Language and Culture Module, Arts and Physical Education Module, Competence Development Module (Foreign Languages & Chinese Studies & Writing), Humanities and Social Sciences Module, and Introduction to Majors Module.

IV. Course Requirements for the Mathematics and Natural Sciences Module and Computer Programming

Course Category	Course Code	Course Name	Credits	Terms	Prerequisite	Dept.	
	MA117	Calculus I	4	1 Fall	None		
Mathematics	MA127	Calculus II	4	1 Spring	MA117	MA	
	MA113	Linear Algebra	4	1 Spring & Fall	None		
	PHY105	College Physics I	4	1 Fall	None		
Physics	PHY106	College Physics II	4	1 Spring	PHY105	PHY	
1 Hysics	PHY104B	Experiments of Fundamental Physics	2 1-2 Sprii & Fall		None	1111	
Chemistry	CH105	Chemistry: The Central Science	3	1-2 Spring & Fall	None	СН	
Biology	BIO102B Introduction to Life Science		3	1-2 Spring & Fall	None	BIO	
Computer Programming	CS111	Introduction to C programming	3	1-2 Spring & Fall	None	CS	

Note:

- 1. The course of Calculus I and II can be replaced by Mathematical Analysis I and II.
- 2. The course of College Physics I and II can be replaced by General Physics I and II
- 3. The course of Linear Algebra can be replaced by Advanced Linear Algebra I.
- 4. The course of Introduction to C programming can be replaced by Introduction to Computer Programming.
- 5. The above alternatives are also applicable to "Prerequisites for Major Declaration."

V. Prerequisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
	MA117	Calculus I	None
	MA127	Calculus II	MA117
Declare major at	MA113	Linear Algebra	None
the end of the first	PHY105	College Physics I	None
academic year	PHY106	College Physics II	PHY105
	PHY104B	Experiments of Fundamental Physics	None
	CS111	Introduction to C programming	None
	MA117	Calculus I	None
	MA127	Calculus II	MA117
	MA113	Linear Algebra	None
	PHY105	College Physics I	None
Declare major at the end of the	PHY106	College Physics II	PHY105
second academic	PHY104B	Experiments of Fundamental Physics	None
year	CS111	Introduction to C programming	None
	CH105	Chemistry: The Central Science	None
	BIO102B	Introduction to Life Science	None
	EE101	Electronic and Information Technology for Metaverse	None

Note:

- 1. If the number of students entering a major at the end of the first academic year in the department is greater than or equal to the total number of the teaching-research faculty (PI)*2*60%, all majors in the department may implement the prerequisites for major declaration at the end of the second academic year.
- 2. If the number of students entering a major at the end of the first academic year in the department is less than the total number of the teaching-research faculty (PI)*2*60%, all majors in the department do not implement the prerequisites for major declaration at the end of the second academic year.
- 3. Suppose the number of students applying for a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), then the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).
- 4. For departments that do not implement prerequisites for major declaration at end of the second academic year, if the cumulative number of students applying for a major at the end of the second academic year and the number of students who have entered a major at the end of the first academic year exceeds four times the total number of the teaching-research faculty (PI), the department may select students according to predetermined rules. In principle, the rules set by the department shall examine the students' suitability for the major and not based on weighted GPA (Specific rules shall be set by the department and announced in advance).

VI: Major Course Arrangement

Table 1: Major Required Courses

Program of Optoelectronic Information Science and Engineering

Course Category	Course Code	Course Name	Credits	Practice-base d Learning Credits	Terms	Prerequisite	Dept.
	EE104	Fundamentals of Electric Circuits	2	0	1 Spring	MA117 MA113	EE
	EE201-17	Analog Circuits	3	0	2 Fall	PHY106 EE104	EE
9	EE201-17L	Analog Circuits Laboratory	1	1	2 Fall	EE201-17	EE
Иаjc	EE205	Signals and Systems	3	1	2 Fall	MA117	EE
Major Foundational Courses	EE207	Engineering Mathematics	4	0	2 Fall	MA127 PHY106 MA113	EE
iona	EE202-17	Digital Circuits	3	0	2 Spring	PHY106	EE
1 Co	EE202-17L	Digital Circuits Laboratory	1	1	2 Spring	EE202-17	EE
ourses	EE208	Engineering Electromagnetics	3	1	2 Spring	MA113 EE104	EE
	MA212	Probability and Statistics	3	0	2 Spring	MA127	MA
	EE351	Microprocessors and Microsystems	3	1	3 Fall	EE201-17 EE202-17	EE
		Total	26	5			
	EE204	Introduction to Semiconductor Devices	3	1	2 Spring	EE203	EE
	EE210	Fundamentals of Optics	3	0	2 Spring	None	EE
Ma	EE317	Advanced Electronic Science Experiment I	1	1	2 Spring	EE201-17 or EE202-17	EE
Major Core Courses	EE309	Introduction to Semiconductor Optics	3	0	3 Fall	None	EE
e Cour	EE318	Advanced Electronic Science Experiment II	1	1	3 Fall	EE317	EE
ses	EE310	Principles and Technologies of Lasers	3	0	3 Spring	None	EE
	EE405	Advanced Electronic Science Experiment III	1	1	3 Spring	EE317	EE
		Total	15	4			
C Pr	EE470	Internship	2	2	3 Summer	None	EE
Practice- based Courses	EE492	Undergraduate Thesis/Projects	12	12	4 Spring	None	EE
es es		Total	14	14	•	"	
	7	Total	55	23			

Note: Students who have completed Comprehensive Design I&II are not required to take the Graduation Projects/Thesis.

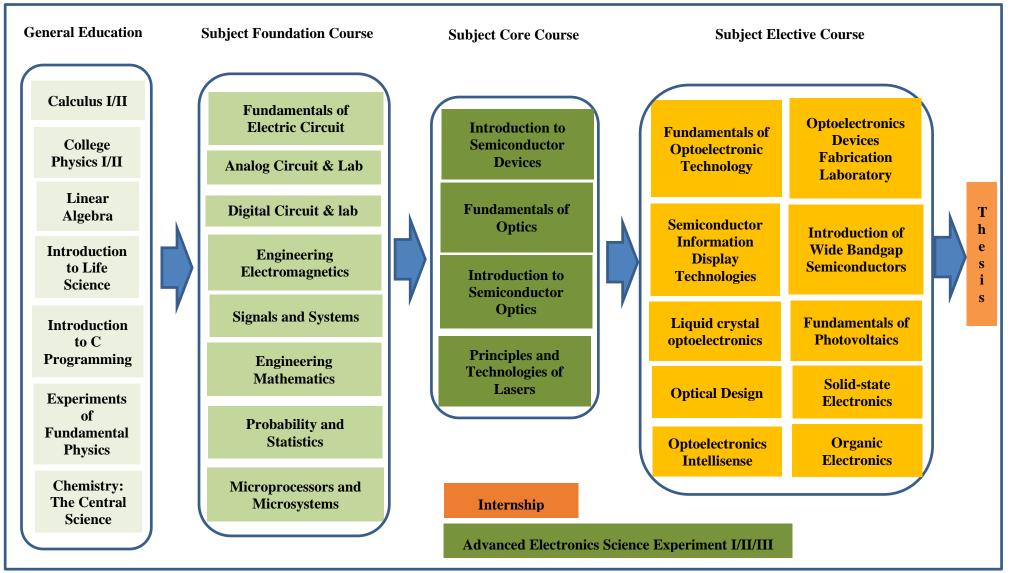
Table 2: Major Elective Courses

Program of Optoelectronic Information Science and Engineering

Course Category	Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
	EE108	Optoelectronics Intellisense	3	0	1 Spring	None	EE
	EE203	Solid-state Electronics	3	0	2 Fall	PHY106	EE
	EE303	Fundamentals of Optoelectronic Technology	3	1	3 Fall	PHY106	EE
	EE311	Optical Design	3	1	3 Fall	None	EE
3	EE335	Liquid crystal optoelectronics	3	1	3 Fall	EE210	EE
Module A	EE345	Introduction of Wide Bandgap Semiconductors	3	0	3 Fall	EE203 or EE204	EE
	EE322	Optoelectronics Devices Fabrication Laboratory	2	1	3 Spring	EE204	EE
	EE336	Fundamentals of Photovoltaics	3	1	3 Spring	EE204	EE
	EE435	Semiconductor Information Display Technologies	3	0	4 Fall	EE203 EE204	EE
	EE404	Organic Electronics	2	0	4 Spring	None	EE
	EE271	Artificial Intelligence and Machine Learning	3	0	2 Fall	MA127 MA113	EE
	CS203B	Data Structures and Algorithm Analysis B	3	1	2 Fall	CS109	CS
	EE206	Communication Principles	3	1	2 Spring	EE205	EE
	EE270	System Modeling and Simulation	3	1	2 Spring	EE207	EE
	EE272	Intelligent Sensing and Signal Processing	3	1	2 Spring	None	EE
	CS208	Algorithm Design and Analysis	3	1	2 Spring	CS109 CS203B	CS
	EE305	Introduction to VLSI Technology	3	1	3 Fall	EE203	EE
	EE313	Wireless Communications	3	1	3 Fall	EE206	EE
	EE315	Data communications and networking	3	1	3 Fall	None	EE
Mod	EE316	Microwave Engineering	3	1	3 Fall	EE201-17 EE208	EE
lule B	EE323	Digital Signal Processing	3	1	3 Fall	EE205	EE
8	EE342	Sensors and Applications	3	0	3 Fall	None	EE
	EE346	Mobile Robot Navigation and Control	3	1	3 Fall	EE205 MA212	EE
	EE371	Automatic Control Theory	3	0	3 Fall	EE104	EE
	CS303B	Artificial Intelligence B	3	1	3 Fall	CS203B CS109 MA212	CS
	CS307	Principles of Database Systems	3	1	3 Fall	None	CS
	MA305	Numerical Analysis	3	0	3 Fall	MA203A 或 MA213	MA
	MEE5105	Fundamentals of Engineering Optimization	3	0	3 Fall	MA113 MA117	ME
	EE307	Antennas and Radio Propagation	3	1	3 Spring	EE208 EE104	EE
	EE308	Fiber Communication Principles and Techniques	3	1	3 Spring	None	EE

EE312	Design of Modern Communication Systems	3	1	3 Spring	EE206 EE313	EE
EE326	Digital Image Processing	3	1	3 Spring	EE205	EE
EE328	Speech Signal Processing	3	1	3 Spring	EE323	EE
EE332	Digital System Design	3	1	3 Spring	EE202-17	EE
EE340	Statistical Learning for Data Science	3	0	3 Spring	MA113	EE
EE368	Robotic Motion and Control	3	1	3 Spring	EE205	EE
EE370	Design and Practice of Computer Control System	3	1	3 Spring	EE270 EE371	EE
EE372	System Identification and Adaptive Control	3	0	3 Spring	EE371	EE
EE411	Information Theory and Coding	2	0	4 Fall	MA212	EE
EE417	Communications System Design II	2	2	4 Fall	EE316 EE206 EE307	EE
EE433	Modern Electric Vehicle Technologies	2	0	4 Fall	EE208	EE
EE471	Advanced Control Theory	3	0	4 Fall	EE371	EE
CS405	Machine Learning	3	1	4 Fall	MA212 MA113	CS
ME424	Modern Control and Estimation	3	0	4 Fall	EE371	ME
	Total	127	29			

Note: At least 23 credits are required, and at least three courses from Module A are required.


Table 3: Overview of Practice-based Learning

Program of Optoelectronic Information Science and Engineering

Course Code	Course Name	Credits	Practice-based Learning Credits	Terms	Prerequisite	Dept.
EE201-17L	Analog Circuits Laboratory	1	1	2 Fall	EE201-17	EE
EE205	Signals and Systems	3	1	2 Fall	MA117	EE
CS203B	Data Structures and Algorithm Analysis B	3	1	2 Fall	CS109	CS
EE202-17L	Digital Circuits Laboratory	1	1	2 Spring	EE202-17	EE
EE204	Introduction to Semiconductor Devices	3	1	2 Spring	EE203	EE
EE206	Communication Principles	3	1	2 Spring	EE205	EE
EE208	Engineering Electromagnetics	3	1	2 Spring	MA113 EE104	EE
EE270	System Modeling and Simulation	3	1	2 Spring	EE207	EE
EE272	Intelligent Sensing and Signal Processing	3	1	2 Spring	None	EE
EE317	Advanced Electronic Science Experiment I	1	1	2 Spring	EE201-17 or EE202-17	EE
CS208	Algorithm Design and Analysis	3	1	2 Spring	CS109 CS203B	CS
EE303	Fundamentals of Optoelectronic Technology	3	1	3 Fall	PHY106	EE
EE305	Introduction to VLSI Technology	3	1	3 Fall	EE203	EE
EE311	Optical Design	3	1	3 Fall	None	EE
EE313	Wireless Communications	3	1	3 Fall	EE206	EE
EE315	Data communications and networking	3	1	3 Fall	None	EE
EE316	Microwave Engineering	3	1	3 Fall	EE201-17 EE208	EE
EE318	Advanced Electronic Science Experiment II	1	1	3 Fall	EE317	EE
EE323	Digital Signal Processing	3	1	3 Fall	EE205	EE
EE335	Liquid crystal optoelectronics	3	1	3 Fall	EE210	EE
EE346	Mobile Robot Navigation and Control	3	1	3 Fall	EE205 MA212	EE
EE351	Microprocessors and Microsystems	3	1	3 Fall	EE201-17 EE202-17	EE
CS303B	Artificial Intelligence B	3	1	3 Fall	CS203B CS109 MA212	CS
CS307	Principles of Database Systems	3	1	3 Fall	None	CS
EE307	Antennas and Radio Propagation	3	1	3 Spring	EE208 EE104	EE
EE308	Fiber Communication Principles and Techniques	3	1	3 Spring	None	EE
EE312	Design of Modern Communication Systems	3	1	3 Spring	EE206 EE313	EE
EE322	Optoelectronics Devices Fabrication Laboratory	2	1	3 Spring	EE204	EE
EE326	Digital Image Processing	3	1	3 Spring	EE205	EE

EE328	Speech Signal Processing	3	1	3 Spring	EE323	EE
EE332	Digital System Design	3	1	3 Spring	EE202-17	EE
EE336	Fundamentals of Photovoltaics	3	1	3 Spring	EE204	EE
EE368	Robotic Motion and Control	3	1	3 Spring	EE205	EE
EE370	Design and Practice of Computer Control System	3	1	3 Spring	EE270 EE371	EE
EE405	Advanced Electronic Science Experiment III	1	1	4 Fall	EE317	EE
EE470	Internship	2	2	3 Summer	None	EE
EE417	Communications System Design II	2	2	4 Fall	EE316 EE206 EE307	EE
CS405	Machine Learning	3	1	4 Fall	MA212 MA113	CS
EE492	Undergraduate Thesis/Projects	12	12	4 Spring	None	EE
Total		113	52			

Curriculum Structure of Optoelectronic Information Science and Engineering

