Department of Computer Science and Engineering

Program of Intelligence Science and Technology for International Students (2021)

I. Introduction

Intelligence Science and Technology is emerging as a new high-tech frontier major which combines many other fields of study, such as Computer Science, Control Science, Information Science and Cognitive Science. It involves data mining, machine leaning, human-machine interactive, mathematical logic, intelligent sensing, robots, and the new era of network computing technology. This major can dramatically promote the rapid development of various kinds of intelligent systems and key technologies closely related to national economy, industrial manufacturing and people's daily life.

Intelligent science has been recognized as the key engine that drives the world's technology development since this century, and thus Intelligent Science and Technology is one of the most promising majors worldwide.

II. Objectives and Learning Outcomes

This major is aiming at cultivating talents who possess a high standard of ethics and rich cultural scientific literacy, with basic theory, knowledge and skills of computational intelligence, data intelligence, machine intelligence, and information intelligence and so on, as well as strong adaptability and modern scientific sense of innovation. After graduation, students can not only engage in research, exploitation, management, or teaching in intelligent science and technology field in corporations, scientific research institutes, universities, but also continue their postgraduate studies in Intelligence Science and Technology and related or interdisciplinary fields.

Graduates should acquire the following knowledge and abilities:

1. Solid fundamental knowledge of mathematics, physics, information processing, computer and computing technology.
2. Master the basic skills of computational intelligence, data intelligence, machine intelligence and information intelligence.
3. Strong self-study ability, hands-on ability, sense of innovation and high comprehensive quality.
4. Understanding of the frontiers, latest developments and trends in the field of computer and information systems, and intelligent science and technology.
5. Understanding of the frontier theories of artificial intelligence and intelligent system.

Possess the preliminary ability to do researches, develop new systems, and technologies.

III. Study Length and Graduation Requirements

Study length: 4 years
Degree conferred: Bachelor of Engineering
The minimum credit requirement for graduation: 129 credits (not including English courses);

Category	Module	Minimum Credit Requirement
General Education (GE) Required Courses (48 credits)	Science	28
	Physical Education	4
	Chinese Languages \& Culture	16
	Humanities	4
	Social Sciences	4
Major Course (69 credits)	Arts	2
	Science	2
	Major Foundational Courses	20
	Major Core Courses	18
	Major Elective Courses	21
Total (not including English courses)		10

IV. Discipline

Intelligence Science and Technology

V. Main Courses

Introduction to Mathematical Logic, Probability and Statistics, Data Structures and Algorithm Analysis, Principles of Database Systems, Signals and Systems, Discrete Mathematics, Algorithm Design and Analysis, Artificial Intelligence, Machine Learning, Operating Systems and so on.

VI. Practice-Based Courses

See the table 3 of Major Course Arrangement.

VII. Pre-requisites for Major Declaration

Major Declaration Time	Course Code	Course Name	Prerequisite
Declare major at the end of First Year	MA101B	Calculus I A	
	MA102B	Calculus II A	MA101B
	MA107A	Linear Algebra A	
	PHY103B	General Physics B (I)	
	PHY105B	General Physics B (II)	PHY103B
	CS102A	Introduction to Computer Programming A	
	BIO102B	Introduction to Life Science	
	PHY104B	Experiments of Fundamental Physics	
	CS104	Introduction to Mathematical Logic	
Remarks: In addition to the above 9 courses, a written test and interview are required.			
Declare major at the end of Second Year	MA101B	Calculus I A	
	MA102B	Calculus II A	MA101B
	MA107A	Linear Algebra A	
	PHY103B	General Physics B (I)	
	PHY105B	General Physics B (II)	PHY103B
	CS102A	Introduction to Computer Programming A	
	BIO102B	Introduction to Life Science	
	PHY104B	Experiments of Fundamental Physics	
	CS104	Introduction to Mathematical Logic	
	MA212	Probability and Statistics	MA102a or MA102B
	CS203	Data Structures and Algorithm Analysis	CS102A
	CS307	Principles of Database Systems	CS102A
	EE205	Signals and Systems	MA101B
	CS201	Discrete Mathematics	MA102B, MA107A
	CS208	Algorithm Design and Analysis	CS102A, CS203

VIII. Requirements for GE Required Courses

(I) Science Module

Course Code	Course Name	$\stackrel{\text { O}}{\stackrel{0}{\circ}}$			$\stackrel{\text { ¢ }}{\text { ¢ }}$			묶
MA101B	Calculus I A	4		4	Spr/ Fall	B/E	NA	MATH
MA102B	Calculus II A	4		4	$\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	MA101B	MATH
MA107A	Linear Algebra A	4		4	$\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	NA	MATH
PHY103B	General Physics B (I)	4		4	$\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	NA	PHY
PHY105B	General Physics B (II)	4		4	$\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	PHY103B	PHY
CS102A	Introduction to Computer Programming A	3		4	$\begin{aligned} & \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	NA	CSE
BIO102B	Introduction to Life Science	3	1	3	$\begin{aligned} & \hline \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	NA	BIO
PHY104B	Experiments of Fundamental Physics	2	2	4	$\begin{aligned} & \text { Spr/ } \\ & \text { Fall } \end{aligned}$	B/E	NA	PHY
	Total	28	3	31				

(II) Physical Education

Course Code	Course Name	$\stackrel{\bigcirc}{0}$		-			Dept.
GE131	Physical Education I	1	2	Fall	C	NA	PE Center
GE132	Physical Education II!	1	2	Spr	C	NA	
GE231	Physical Education III	1	2	Fall	C	NA	
GE232	Physical Education IV	1	2	Spr	C	NA	
GE331	Physical Education V	0	2	Fall	C	NA	
GE332	Physical Education VI	0	2	Spr	C	NA	
	Total	4	12				

[^0](III) Chinese Languages \& Culture

Course Code	Course Name	$\begin{aligned} & \text { ? } \\ & \stackrel{0}{7} \end{aligned}$		$\begin{aligned} & \overrightarrow{\mathbf{o}} \\ & \stackrel{y}{3} \end{aligned}$			䓓
CLE008	Elementary Chinese I	2	4	1/Fall	B	NA	CLE
CLE009	Elementary Chinese II	2	4	1/Spr	B	CLE008	
CLE027	Intermediate Chinese I	2	4	2/Fall	B	CLE009	
CLE028	Intermediate Chinese II	2	4	2/Spr	B	CLE027	
CLE031	Advanced Chinese I	2	4	3/Fall	B	CLE028	
CLE032	Advanced Chinese II	2	4	3/Spr	B	CLE031	
CLE033	Chinese Culture	2	2	Spr/Fall	B/E	NA	CLE/
CLE034	Chinese History	2	2	Spr/Fall	B/E	NA	

(IV) English Language

Students will undertake the English Placement Test and be placed into three levels according to the result of the test and their performance in the National College Entrance Exam. Students at different levels are required to take the courses with a different credit value in total.

Level A: 8 credits; SUSTech English III, English for Academic Purposes and 2-credit CLE elective course

Level B: 12 credits; SUSTech English II, SUSTech English III, English for Academic Purposes, and 2-credit CLE elective course

Level C: 14 credits; SUSTech English I, SUSTech English II, SUSTech English III, and English for Academic Purposes.

List of English Language Courses

Course Code	Course Name					Dept	Notes
CLE021	SUSTech English I	4	4	E	NA	CLE	Required
CLE022	SUSTech English II	4	4	E	CLE021		
CLE023	SUSTech English III	4	4	E	CLE022		
CLE030	English for Academic Purposes	2	2	E	CLE023		
1	(at least one 2-credit CLE elective course)	2	2	E	CLE030		Level A \& B Required

IX. Requirements for GE Elective Courses

(I) Students are required to complete 4 credits for the Humanities Module and Social Sciences Module respectively, and 2 credits for the Music and Art Module. (Information about the available courses and the instruction language will be announced before the course selection session)
(II) Students are required to complete 2 credits for Science Module.

Course Code	Course Name	$\begin{aligned} & \text { 을 } \\ & \stackrel{0}{7} \end{aligned}$			$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{o}} \\ \overrightarrow{3} \end{gathered}$			-
CH101B	General Chemistry B	3		3	Spr/Fall	B/E	NA	CHEM
EE104	Fundamentals of Electric Circuits	2		2	Spr	E	MA101B MA107A	EE
ME112	Introduction to Matlab	2	1	3	Spr	E	NA	MEE
ME232	Prolegomenon to Robotics	3		3	Spr	E	NA	MEE
CS103	Introduction to Artificial Intelligence	2		2	Fall	E	NA	CSE
	Total	12	1	13				

X. Major Course Arrangement

Table 1: Major Required Course (Foundational and Core Courses)

	Course Code	Course Name	$\begin{aligned} & \text { ? } \\ & \stackrel{0}{\infty} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$			$\begin{aligned} & \overrightarrow{\mathbf{o}} \\ & \text { 今心 } \end{aligned}$				-
	CS104	Introduction to Mathematical Logic	2		2	Spr	1/Spr	E	NA	CSE
	MA212	Probability and Statistics	3		3	$\begin{aligned} & \text { Fall } \\ & \text { /Spr } \end{aligned}$	2Fall	E	$\begin{gathered} \text { MA102a } \\ \text { or } \\ \text { MA102B } \\ \hline \end{gathered}$	MATH
	CS203	Data Structures and Algorithm Analysis	3	1	4	$\begin{aligned} & \text { Fall } \\ & \text { /Spr } \\ & \hline \end{aligned}$	2Fall	E	CS102A	CSE
	CS307	Principles of Database Systems	3	1	4	$\begin{aligned} & \text { Fall } \\ & \mathrm{ISpr} \\ & \hline \end{aligned}$	2/Fall	E	CS102A	CSE
	EE205	Signals and Systems	3	1	4	$\begin{aligned} & \text { Fall } \\ & \text { /Spr } \end{aligned}$	2Fall	E	MA101B	EE
	CS201	Discrete Mathematics	3		3	$\begin{aligned} & \text { Fall } \\ & \text { /Spr } \\ & \hline \end{aligned}$	2/Spr	E	MA102B, MA107A	CSE
	CS208	Algorithm Design and Analysis	3	1	4	$\begin{aligned} & \text { Fall } \\ & \text { /Spr } \end{aligned}$	2/Spr	E	$\begin{gathered} \hline \text { CS102A, } \\ \text { CS203 } \end{gathered}$	CSE
		Total	20	4	24					
	CS303	Artificial Intelligence	3	1	4	Fall	3/Fall	E	$\begin{gathered} \hline \text { CS102A, } \\ \text { CS203, } \\ \text { MA212 } \end{gathered}$	CSE
	CS405	Machine Learning	3	1	4	Fall	3/Fall	E	MA107A, MA212	CSE
	CS321	Group Projects I	2	2	4	Fall	3/Fall	B	NA	CSE
	CS317	Frontier Seminars in Computer Science and Technology I	1		1	Fall	3/Fall	E	NA	CSE
	CS302	Operating Systems	3	1	4	Spr	$3 / \mathrm{Spr}$	E	$\begin{gathered} \text { CS102A, } \\ \text { CS203 } \end{gathered}$	CSE
	CS326	Group Projects II	2	2	4	Spr	3 / Spr	B	NA	CSE
	CS318	Frontier Seminars in Computer Science and Technology II	1		1	Spr	3 / Spr	E	NA	CSE
	CS413	Group Projects III	2	2	4	Fall	4/Fall	B	NA	CSE
	CS415	Frontier Seminars in Computer Science and Technology III	1		1	Fall	4/Fall	E	NA	CSE
		Total	18	9	27					
	CS470	Industrial Practice	2							
	CS490	Undergraduate Thesis/Projects	8							
		Total	10							
	Remarks: Students who have completed Comprehensive Design I \& II (COE491 \& COE492) are not requirUndergraduate Thesis/Projects (CS490)									

Table 2: Major Elective Courses

Course Code	Course Name								-
CS101A	Introduction to Computer Science A	2		2	Fall	1/ Fall	E	NA	CSE
CS106	Introduction to Cognitive Science	2		2	Fall	1/ Fall	B	NA	CSE
CS105	Lab of Introduction to Cognitive Science	1	1	2	Fall	1/ Fall	B	NA	CSE
CS209A	Computer System Design and Applications A	3	1	4	$\begin{aligned} & \hline \text { Fall/ } \\ & \text { Spr } \end{aligned}$	1/Spr	E	$\begin{aligned} & \hline \text { CS102A or } \\ & \text { CS102B } \\ & \hline \end{aligned}$	CSE
CS205	C/C++ Program Design	3	1	4	$\begin{gathered} \text { Fall// } \\ \mathrm{Spr} \\ \hline \end{gathered}$	2/ Fall	E	NA	CSE
CS207	Digital Logic	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { ISpr } \\ & \hline \end{aligned}$	2/ Fall	E	NA	CSE
CS202	Computer Organization	3	1	4	$\begin{aligned} & \text { Fall } \\ & \text { ISpr } \end{aligned}$	2/ Spr	E	CS207	CSE
CS306	Data Mining	3	1	4	Spr	2/Spr	E	$\begin{aligned} & \hline \text { CS203 or } \\ & \text { CS203B } \end{aligned}$	CSE
MA309	Time Series Analysis	3		3	Fall	3/ Fall	B	MA212 or MA204	STAT
MA305	Numerical Analysis	3		3	Fall	3/ Fall	B	MA203a or MA213	MATH
EE323	Digital Signal Processing	3	1	4	Fall	3/ Fall	E	EE205	EE
CS301	Embedded System and Microcomputer Principle	3	1	4	Fall	3/ Fall	E	CS207	CSE
CS305	Computer Networks	3	1	4	Fall	3/ Fall	E	CS102A	CSE
CS309	Object-oriented Analysis and Design	3	1	4	Fall	3/ Fall	E	CS102A, CS203	CSE
CS313	Automated Reasoning	3	1	4	Fall	3/ Fall	B	CS104	CSE
CS323	Compilers	3	1	4	Fall	3/ Fall	B	$\begin{gathered} \text { CS102A or } \\ \text { CS205, CS202 } \end{gathered}$	CSE
CS308	Computer Vision	3	1	4	Fall	3/ Fall	B	$\begin{gathered} \text { CS102A,CS203 } \\ \text {,MA102B,MA10 } \\ \text { 7A } \\ \hline \end{gathered}$	CSE
CS315	Computer Security	3	1	4	Fall	3/ Fall	B	CS102A	CSE
CS325	Multi-agent Systems	3	1	4	Fall	3/ Fall	E	$\begin{gathered} \text { CS102A, } \\ \text { CS203, MA212 } \end{gathered}$	CSE
CS304	Software Engineering	3	1	4	Spr	3/ Spr	E	CS102A, CS203	CSE
CS312	Computer Graphics	3	1	4	Spr	3/Spr	E	NA	CSE
CS314	Internet of Things	3	1	4	Spr	3/Spr	E	CS305	CSE
CS324	Deep Learning	3	1	4	Spr	3/Spr	E	CS303	CSE
CS310	Natural Language Processing	3	1	4	Spr	3/Spr	E	CS303	CSE
CS330	Multimedia Information Processing	3	1	4	Spr	3/Spr	B	NA	CSE
CS332	Information Retrieval	3	1	4	Spr	3/Spr	B	CS203	CSE
CS328	Distributed and Cloud Computing	3	1	4	Spr	3/Spr	E	$\begin{array}{r} \hline \text { CS102A, } \\ \text { CS305 } \\ \hline \end{array}$	CSE

CS401	Intelligent Robotics	3	1	4	Spr	3/Spr	E	CS102A, CS203, MA212	CSE
MA333	Introduction to Big Data Science	3		3	Spr	3/Spr	B	MA212 or MA215	MATH
EE326	Digital Image Processing	3	1	4	Spr	3/Spr	E	EE205	EE
EE411	Information Theory and Coding	2		2	Fall	4/ Fall	B	MA212	EE
CSE5014	Cryptography and Network Security	2		2	Fall	4/ Fall	B	$\begin{gathered} \text { CS201, MA212, } \\ \text { CS203 } \end{gathered}$	CSE
CSE5005	Advanced Computer Networks and Big Data	3	1	4	Fall	4/ Fall	B	CS305	CSE
CS409	Software Testing	3	1	4	Fall	4/ Fall	E	CS304	CSE
CSE5003	Advanced Algorithms	3	1	4	Fall	4/ Fall	E	CS208	CSE
CSE5001	Advanced Artificial Intelligence	3	1	4	Fall	4/ Fall	B	CS303	CSE
CSE5012	Evolutionary Computation and Its Applications	3	1	4	Spr	4/Spr	B	CS303	CSE
CSE5018	Advanced Optimization Algorithms	3	1	4	Spr	4/Spr	E	CSE5003	CSE
CS402	Frontier Seminars in Computer Science and Technology IV	1		1	Spr	4/Spr	E	NA	CSE
	Total	109	31	140					
Remarks: 1. Students are required to study three courses of them (Computer Vision, Intelligent Robotics, Multi-agent Systems, Deep Learning). 2. Students are required to study one course of them (Automated Reasoning, Natural Language Processing)									

Table 3: Overview of Practice-Based Courses

Course Code	Course Name	$\begin{aligned} & \text { ? } \\ & \stackrel{0}{\infty} \\ & \stackrel{\rightharpoonup}{F} \end{aligned}$			$\begin{aligned} & \overrightarrow{\mathbf{o}} \\ & \stackrel{7}{\tilde{心}} \end{aligned}$				-
CS105	Lab of Introduction to Cognitive Science	1	1	2	Fall	1/ Fall	B	NA	CSE
CS209A	Computer System Design and Applications A	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { ISpr } \end{aligned}$	1/ Spr	E	CS102A or CS102B	CSE
CS203	Data Structures and Algorithm Analysis	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { /Spr } \\ & \hline \end{aligned}$	2/ Fall	E	CS102A	CSE
CS307	Principles of Database Systems	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { ISpr } \end{aligned}$	2/ Fall	E	CS102A	CSE
EE205	Signals and Systems	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { /Spr } \\ & \hline \end{aligned}$	2/ Fall	E	MA101B	EE
CS205	C/C++ Program Design	3	1	4	$\begin{aligned} & \text { Fall/ } \\ & \text { Spr } \end{aligned}$	2/ Fall	E	NA	CSE
CS207	Digital Logic	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { ISpr } \end{aligned}$	2/ Fall	E	NA	CSE
CS208	Algorithm Design and Analysis	3	1	4	$\begin{aligned} & \text { Fall } \\ & \text { ISpr } \\ & \hline \end{aligned}$	2/ Spr	E	CS102A, CS203	CSE
CS202	Computer Organization	3	1	4	$\begin{aligned} & \hline \text { Fall } \\ & \text { ISpr } \end{aligned}$	2/ Spr	E	CS207	CSE
CS306	Data Mining	3	1	4	Spr	2/ Spr	E	$\begin{aligned} & \text { CS203 or } \\ & \text { CS203B } \end{aligned}$	CSE
CS303	Artificial Intelligence	3	1	4	Fall	3/ Fall	E	$\begin{gathered} \text { CS102A,CS203, } \\ \text { MA212 } \\ \hline \end{gathered}$	CSE
CS405	Machine Learning	3	1	4	Fall	3/ Fall	E	MA107A, MA212	CSE
CS321	Group Projects I	2	2	4	Fall	3/ Fall	B	NA	CSE
EE323	Digital Signal Processing	3	1	4	Fall	3/ Fall	E	EE205	EE
CS301	Embedded System and Microcomputer Principle	3	1	4	Fall	3/ Fall	E	CS207	CSE
CS305	Computer Networks	3	1	4	Fall	3/ Fall	E	CS102A	CSE
CS309	Object-oriented Analysis and Design	3	1	4	Fall	3/ Fall	E	CS102A, CS203	CSE
CS313	Automated Reasoning	3	1	4	Fall	3/ Fall	B	CS104	CSE
CS323	Compilers	3	1	4	Fall	3/ Fall	B	$\begin{gathered} \hline \text { CS102A or } \\ \text { CS205, CS202 } \\ \hline \end{gathered}$	CSE
CS308	Computer Vision	3	1	4	Fall	3/ Fall	B	$\begin{gathered} \text { CS102A,CS203, } \\ \text { MA102B,MA107A } \\ \hline \end{gathered}$	CSE
CS315	Computer Security	3	1	4	Fall	3/ Fall	B	CS102A	CSE
CS325	Multi-agent Systems	3	1	4	Fall	3/ Fall	E	$\begin{gathered} \text { CS102A, } \\ \text { CS203, MA212 } \end{gathered}$	CSE
CS302	Operating Systems	3	1	4	Spr	3/ Spr	E	CS102A, CS203	CSE
CS326	Group Projects II	2	2	4	Spr	3/ Spr	B	NA	CSE
CS304	Software Engineering	3	1	4	Spr	3/ Spr	E	CS102A, CS203	CSE
CS312	Computer Graphics	3	1	4	Spr	3/ Spr	E	NA	CSE
CS314	Internet of Things	3	1	4	Spr	3/ Spr	E	CS305	CSE
CS324	Deep Learning	3	1	4	Spr	3/Spr	E	CS303	CSE

CS310	Natural Language Processing	3	1	4	Spr	3/Spr	E	CS303	CSE
CS330	Multimedia Information Processing	3	1	4	Spr	3/Spr	B	NA	CSE
CS332	Information Retrieval	3	1	4	Spr	3/Spr	B	CS203	CSE
CS328	Distributed and Cloud Computing	3	1	4	Spr	3/Spr	E	$\begin{array}{r} \hline \text { CS102A, } \\ \text { CS305 } \end{array}$	CSE
CS401	Intelligent Robotics	3	1	4	Spr	3/ Spr	E	$\begin{gathered} \hline \text { CS102A, CS203, } \\ \text { MA212 } \end{gathered}$	CSE
EE326	Digital Image Processing	3	1	4	Spr	3/ Spr	E	EE205	EE
CS413	Group Projects III	2	2	4	Fall	4/ Fall	B	NA	CSE
CSE5005	Advanced Computer Networks and Big Data	3	1	4	Fall	4/ Fall	B	CS305	CSE
CS409	Software Testing	3	1	4	Fall	4/ Fall	E	CS304	CSE
CSE5003	Advanced Algorithms	3	1	4	Fall	4/ Fall	E	CS208	CSE
CSE5001	Advanced Artificial Intelligence	3	1	4	Fall	4/ Fall	B	CS303	CSE
CSE5012	Evolutionary Computation and Its Applications	3	1	4	Spr	4/Spr	B	CS303	CSE
CSE5018	Advanced Optimization Algorithms	3	1	4	Spr	4/ Spr	E	CSE5003	CSE
CS470	Industrial Practice	2							
CS490	Undergraduate Thesis/Projects	8							
	Total	128	44	162					

Table 4: Overview of Course Hours and Credits

Course Category	Total Course Hours	Total Credits	Credit Requirements	Percentage of the Total *
General Education (GE) Required Courses (not including English courses)			48	
General Education (GE) Elective Courses		12		
Major Foundational Courses	384	20	20	100%
Major Core Courses	432	18	18	100%
Major Elective Courses	2240	109	21	19.27%
Internship and Undergraduate Thesis/Projects		10	10	100%
Total (not including English courses)		129		

* Percentage of the total= Credit requirements of each line / Total credit requirements

Curriculum Structure of Intelligence Science and Technology Major

[^0]: GE131, GE132, GE231, GE232, GE331, GE332 are required PE courses offered by Center For Physical Education. Students are required to select a specific sport program each semester. Student who meets the exemption conditions stated in "SUSTech
 Physical Education Course Exemption Regulation" can apply for exemption from GE331 and GE332.

