

课程详述

COURSE SPECIFICATION

以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联 系授课教师。

The course information as follows may be subject to change, either during the session because of unforeseen circumstances, or following review of the course at the end of the session. Queries about the course should be directed to the course instructor.

1.	课程名称 Course Title	算法设计与分析 Algorithm Design and Analysis							
2.	授课院系 Originating Department	计算机科学与工程系 Department of Computer Science and Technology							
3.	课程编号 Course Code	CS208							
4.	课程学分 Credit Value	3							
5.	课程类别 Course Type	专业基础课	专业基础课 Major Foundational Courses						
6.	授课学期 Semester	春季 Spring							
7.	授课语言 Teaching Language	英文 English							
8.	授课教师、所属学系、联系方 式(如属团队授课,请列明其 他授课教师) Instructor(s), Affiliation& Contact (For team teaching, please list all instructors)	史玉回,讲席教授,计算机科学与工程系, shiyh@sustech.edu.cn Yuhui Shi, Chair Professor, Department of Computer Science and Engineering, shiyh@sustech.edu.cn							
9.	实验员/助教、所属学系、联系 方式 Tutor/TA(s), Contact	赵耀,教学实验员,计算机科学与工程系, zhaoy6@sustech.edu.cn Yao Zhao, Teaching laboratory technician, Department of Computer Science and Engineering, zhaoy6@sustech.edu.cn							
10.	选课人数限额(可不填) Maximum Enrolment (Optional)								
11.	授课方式	讲授	习题/辅导/讨论	实验/实习	其它(请具体注明)	总学时			
	Delivery Method	Lectures	Tutorials	Lab/Practical	Other (Please specify)	Total			
	学时数 Credit Hours	32		32		64			

12.	先修课程、其它学习要求 Pre-requisites or Other Academic Requirements	CS102A计算机程序设计基础 AIntroduction to Computer Programming ACS203数据结构与算法分析Data Structures and Algorithm Analysis				
13.	后续课程、其它学习规划 Courses for which this course is a pre-requisite	None				
14.	其它要求修读本课程的学系 Cross-listing Dept.	Not applicable for other departments beside CS				

教学大纲及教学日历 SYLLABUS

15. 教学目标 Course Objectives

The course aims to teach students the basic concepts on algorithms, and introduce the fundamentals of algorithm design and analysis techniques. In this course, the students will be familiar with major algorithms, such as fundamental graphbased algorithms, greedy algorithms, divide-and-conquer algorithms, dynamic programming algorithms, and network flow algorithms. In addition, upon completion of this course, the students should be able to program these algorithms for solving corresponding problems.

16.

预达学习成果 Learning Outcomes

Upon completion of this course, students shall have the capabilities of doing:

1) Prove the correctness of algorithms;

2) Analyze the asymptotic order of growth of algorithms;

3) Be familiar with major algorithms like fundamental graph-based algorithms, greedy algorithms, divide-and-conquer algorithms, dynamic programming algorithms, and network flow algorithms;

Schola

4) Apply design and analysis methods to the above-mentioned major algorithms;

5) Implement these major algorithms by using a programming language.

17. 课程内容及教学日历(如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明 主讲人)

Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if this is a team teaching or module course.)

Week 1: Introduction to Algorithm Design and Analysis

Stable Matching Problem

[Lab 1] Reviewing the Stable Matching algorithm and construction skills of test cases

Week 2: Five Representative Problems

Interval Scheduling

Weighted Interval Scheduling

Bipartite Matching

Independent Set

Competitive Facility Location

[Lab 2] Programming stable matching algorithms

Week 3: Basics of Algorithm Analysis

Computational Tractability

Asymptotic Order of Growth

Common Running Time

[Lab 3] Writing a runtime survey program, and testing the algorithms with n, nlogn, n^2 and other time complexity. Observing that how the runtime changes with the increase of the input scale of the problem.

Week 4 &5: Graphs

Graph Traversal

Testing Bipartiteness

Connectivity in Directed Graphs

DAG and Topological Ordering

[Lab 4] Using BFS or DFS to solve some Graph Search Problems

[Lab 5] Using Topological Ordering to solve some common problems, such as courses scheduling or projects planning

A SOLO TO SOLO

Week 6, 7 & 8: Greedy Algorithms

Interval Scheduling

Interval Partitioning

Scheduling to Minimize Lateness

Optimal Caching

Shortest Paths in a Graph

Minimum Spanning Tree

Clustering

Huffman Codes

[Lab 6] Solving some Interval Scheduling problems

[Lab 7] Using MST to solve some problems

[Lab 8] Using Huffman to solve some problems

Week 9 & 10: Divide and Conquer

Mergesort	
Counting Inversions	
Closest Pair of Points	
Integer Multiplication	
Convolution and FFT	
[Lab 9] Implementing a simple appl	ication of Divide and Conquer
[Lab 10] Implementing a comprehe	nsive application of Divide and Conquer
Week 11, 12 & 13: Dynamic Progra	amming
Weighted Interval Scheduling	
Segmented Least Squares	
Knapsack Problem	
RNA Secondary Structure	
Sequence Alignment	
Shortest Paths	
[Lab 11] Solving a simple dynamic	programming problem
[Lab 12] Solving the simple knapsa	ck problem
[Lab 13] Ssolving the comprehensiv	ve knapsack problem
Week 14, 15 : Network Flow	la,
Minimum Cut Problem	AND STREET
Maximum Flow Problem	Igorithms and Application Examples
Ford-Fulkerson Algorithm	colific and coli
Good Augmenting Paths	a second
[Lab 14] Explaning Network Flow a	Igorithms and Application Examples
[Lab 15] Solving the comprehensive	e network problem
Week 16: Review and Preparation	for Final Exams
[Lab 16] Review, Q&A	
and the second state of the state dust and the second state of the state state of the second state of the state	

18.

教材及其它参考资料 Textbook and Supplementary Readings

Jon Kleinberg and Eva Tardos, Algorithm Design, Pearson

课程评估 ASSESSMENT

19.	评估形式 Type of Assessment	评估时间 Time	占考试总成绩百分比 % of final score	违纪处罚 Penalty	备注 Notes
	出勤 Attendance	5 min/per time	10%		
	课堂表现 Class Performance				
	小测验 Quiz				
	课程项目 Projects				
	平时作业 Assignments	2 hours/per time	20%		
	期中考试 Mid-Term Test				
	期末考试 Final Exam	2 hours	40%		
	期末报告 Final Presentation				
	其它(可根据需要 改写以上评估方 式) Others (The above may be modified as necessary)	2 hours per week	30%		Lab
					AND

20. 记分方式 GRADING SYSTEM

☑ A. 十三级等级制 Letter Grading 口 B. 二级记分制(通过/不通过) Pass/Fail Grading

课程审批 REVIEW AND APPROVAL

21. 本课程设置已经过以下责任人/委员会审议通过

This Course has been approved by the following person or committee of authority