课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	基因组和组学数据分析/Genomics Data Analysis
2.	课程性质 Compulsory/Elective	专业-选修/Elective
3.	课程学分/学时 Course Credit/Hours	3
4.	授课语言 Teaching Language	英文为主,必要时辅以少量中文解释;教材、课件、考试为英文 English, with a few Chinese. Textbooks, ppts and examinations are in English
5.	授课教师 Instructor(s)	靳文菲,生物系 Dr. Wenei JIN, Department of Biology, SUSTech jinwf@sustech.eud.cn
6.	先修要求 Pre-requisites	Prerequisites include a college level mathematics, statistics and molecular biology
7.	教学目标 Course Objectives	
	Course Objectives	

Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. This subject will help students to understand life in a whole picture --- functional genomics, comparative genomics, evolutionary genomics, transcriptomics, 3D genomics, their interrelations and influence on the organism. Furthermore, this course emphasize on computational analyses of the genomics. Various existing methods will be critically described and the strengths and limitations of each will be discussed, with practical assignments utilizing the tools. It is to train students' vigorous Scientific Spirit and inspire their scientific curiosity.

Learning Outcomes

With the completion of this course, The student could

1) Be familiar with the major genomic database and database searching

2) Be familiar with Linux and master at least one programming language

3) Conduct various genomic analysis

4) Analyze next generation sequencing data including DNA-seq, RNA-seq, ChIP-seq, single cell sequencing data.

8.	教学方法 Teaching Methods		
	PPT presentation, class discussion, written assignments, computational practice and quizzes		
9.	教学内容 Course Contents		
	Section 1	I Introduction of Genomics and Basic computational skills (Linux/shell+ python/R)	

	Hours: 10
	 Past, Present and Future of Genomics and Course Introduction What is genomics? The origin and development of genomics Present Genomics Present Genomics Challenges and future of Genomics Course Introduction: Goals, outline, evaluation/examination and learning guidelines Linux and Linux commands Server and operating systems Linux operating system and Open Source Software
	2.3 Terminal and basic Linux commands 2.4 File system and server management
	2.5 Personal setting
	3. Programing language and shell3.1 Principles of programming languages
	3.2 Script languages and bash shell
	3.3 Basic shell functions
	3.5 Pattern matching in shell
	3.6 Biological data analysis: Modularization and pipeline
	4. Programming language Python 4.1 The features of Python
	4.2 Data types and variable
	4.3 Control structures
	4.4 Functions and procedures
	4.5 Classes & instances
	4.6 Modules & packages
	5. R Language Statistics and Drawing 5.1 Quick start R
	5.2 Basic principles and concepts
	5.3 Data operation in R (Vectors, matrices, arrays, data frames)
	5.4 Plot figures 5.5 Statistical Analysis of P
	5.6 Function definition and programing
	5.7 packages
Section 2	II Basic sequence analysis
	Hours: 6
	6 Pairwise sequence alignments
	6.1 Sequence change over time
	6.2 Pairwise sequence comparisons
	6.3 Dynamic programming alignment
	6.3.1 Global alignment (Needleman-Wunsch)
	6.5.2 Local alignment (Smith-Waterman)
	0.4 Sequence Similarity Searching

	6.4.1 FASTA Algorithm 6.4.2 BLAST Algorithm
	7. Multiple Sequence Alignment and Phylogenetics
	7.2 Programming A lignment (ChustelW)
	7.2 Progressive Alignment (Clustarw)
	7.5 Basics of phylogeny. Characters, traits, hodes, branches, inteages
	7.4 Molecular clock and modeling sequence evolution
	7.5 Distances and clustering algorithm: OPGMA and Neighbor Joining (NJ)
	7.0 From sequence anguments to trees. Parsimony methods
	7.7 I tobability based approach. Maximum fixelihood methods
Section 3	III Next Generation Sequencing (NGS) and cancer genomics
	Hours: 8
	1. NGS and Short reads mapping
	Introduction to Genomic Technologies
	From Sanger sequencing to NGS
	Principles of NGS: Massive parallel sequencing
	Features of NGS data: Short reads
	Uses Trie structure (Trie and Suffix Array) to search a reference genome
	Burrows - Wheeler transform (BWT)
	2. Variant calling and output
	Genetic variants: structure variants, SNV, CNV
	SAM format for mapped reads
	Approaches for variants calling
	VCF format for saving called variants
	3. Cancer genomics and single cell cancer genomics
	Calling variants in cancer genomics
	Single cell cancer genomes
	Tumor microevolution
Section 4	IV Transcriptomic and epigenomic analysis
	Hours: 10
	1.Gene expression profiling and RNA-seq
	What' s the advantage of RNA-seq compared with microarray?
	What factors should we consider for RNA-seq data normalization?
	What' s the advantage of single cell sequencing over bulk cells?
	2. Single cell RNA-seq
	Cellular heterogeneity
	Single cell RNA-seq technologies
	Distinct cell populations
	Pseudo-time inference
	3. Epigenome and data anlysis
	Definition of epigenetics?
	How to detect genome-wide DNA methylation?
	How to detect genome-wide nucleosome positioning and chromatin
	accessibility?
	How to identify genome-wide TF binging sites? How to do the peak calling?

	 What is Hi-C? How to identify the significant interaction? 4. Single cell epigenomics challenges scDNAse-seq scDNAse-seq scATAC-seq multipe-omics 5. Gene Ontology and enrichment analysis Gene ontology (GO) program Structure of GO Gene annotation in GO GO/pathway enrichment analysis Gene set enrichment analysis Gene set enrichment analysis (GSEA)
Section 5	 V Population Genomics and association study Hours: 12 1. Haplotype and linkage disequilibrium What is Haplotype? What is linkage disequilibrium? Calculation of linkage disequilibrium Complet LD and perfect LD Recombination rate and LD block 2. Population genomics Effective population size (Ne) The major forces shaping population Population substructure Measure population structure (F-statistics) Approaches for analysis of population structure Analysis of molecular variance (AMOVA) Dimensionality reduction Model based approaches 3. Approaches for natural selection detection Divergence rate and phylogenetic shadowing Changed function-altering mutation, e.g., dN/dS or KN/KS Polymorphism deviating from interspecies divergence e.g. Hudson-Kreitman-Aguade (HKA) test and McDonald-Kreitman (MK) test Changed allele frequency spectrum e.g., Tajima's D Increased derived allele frequencies Extended haplotype homozygosity (EHH), e.g., iHS Locus-specific population differentiation, e.g., FST Biased ancestry contribution in admixed population. Composite strategies. e.g. combine multiple factors and Likelihood-ratio test 4. Genomics and evolution theory Evolution is a unifying theme in biology History of "evolutionary thought" Darwin's Four Postulates 1) Individuals within species vary.

		2) Some variations are heritable.
		3) More offspring are produced than can survive
		4) Survival and reproduction are nonrandom
		Modern evolutionary theory
		5. Genomics and human evolution
		Classic approaches for study human evolution
		Human origin models
		Mitochondrial and Y-chromosome detailed "Out of African" theory
		Genomic approach revolutionized our understanding of human evolution
		Human origin model based on genomic data
		Human migration and natural selection
		6 Gene manning for identifying disease associated variants
		Linkage analysis for rare disease/Mendelian diseases
		Genetic model for complex disease:
		1) Common disease common variant (CDCV)
		2) Common disease rare variant (CDPV)
		2) Common disease rate variant (CDRV) Mathods for identifying disease associated variants
		1) Earnily based association study
		1) Faining based association study
		2) Case control based association study 2) Association study (NCS)
		3) Association study based on next generation sequencing (NGS)
		Challenge in identifying disease associated variants
	Section 6	VI Genomics and Big data
		Hours: 2
		Accumulation of genomic data
		Clustering algorithms
		1) Hierarchical agglomerative clustering
		2) Partitioning methods
		Two approaches for dimensionality reduction (Feature Selection and feature
		extraction)
		Linear reduction
		1) Principal component analysis (PCA)
		2) Singular Value Decomposition (SVD)
		3) Multi-Dimensional Scaling (MDS)
		Non-linear reduction
		1) t-distributed stochastic neighbor embedding (t-SNE)
		2) Uniform Manifold Approximation and Projection (UMAP)
	Section 7	
	Section 8	
	Section 9	
	Section 10	
10	油油本林	
10.	诛程丐核 Course Assessment	

请再此注明: ①考查/考试: ②分数构成。 Total score 100 Attendance 10 Class Performance 20 Assignments 20 Mid-term Exam 20 Final Presentation/Exam 30

I encourage you to ask questions during the class, and you will get credit of Class Performance.

11. 教材及其它参考资料 Textbook and Supplementary Readings

Reference books:

Introduction to Genomics. Arthur M. Lesk. Oxford University Press; 3 edition. ISBN-10: 0198754833. Bioinformatics and Functional Genomics. Jonathan Pevsner. Wiley-Blackwell; 3 edition. ISBN-10: 1118581784 Medical Genetics And Genomics, Csaba Szalai, ISBN: 9789632791876

Will have some docs at the beginning of the course