课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	PHY5012/量子信息 Quantum Information
2.	课程性质 Compulsory/Elective	专业必修课 Degree Required Course
3.	课程学分/学时 Course Credit/Hours	3/48
4.	授课语言 Teaching Language	英文 English
5.	授课教师 Instructor(s)	Oscar Dahlsten
6.	是否面向本科生开放 Open to undergraduates or not	是 YES
7.	先修要求 Pre-requisites	(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.) 量子力学 I PHY206-15 Quantum Mechanics I

8. 教学目标

Course Objectives

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

本课程为研究生及本科高年级学生讲授量子信息科学的基本概念。完成本课程的学生应掌握: (1) 量子信息学基本概念; (2) 量子态及测量; (3) 量子动力学基础; (4) 密度矩阵的距离测量; (5) 熵在物理学及量子物理学中的意义。

This course aims to give graduate students a foundational understanding on the research area of quantum information science. After completion of this course, students are expected to understand the following concepts: (1) General concepts in quantum information; (2) States and measurements; (3) Quantum dynamics; (4) Distance measures for density matrices; (5) Entropy;

9. 教学方法

Teaching Methods

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

本课程以课堂教学为主。全英文授课。致力于建立书本知识和前沿研究的联系。

This is a theoretical course. Lectures are combined with problem set and other assignments.

10. 教学内容

Course Contents

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

	课程介绍 (第 1 周) Introduction (week 1)
	量子态及测量(第 2-4 周) States and Measurements (week 2-4)

Section 3	量子动力学基础(第 5-7 周) Dynamics (week 5-7)
Section 4	密度矩阵的距离测量 (第 8-9 周) Distance Measurements for density matrices (week 8-9)
Section 5	常见的量子通信协议 (第 10-12 周) Key quantum communication protocols (week 10-12)
Section 6	熵在物理学及量子物理学中的意义(第 13-15 周) Entropy (week 13-15)
Section 7	时下议题 (第 16 周) Current topics (week 16)

11. 课程考核

Course Assessment

(①考核形式 Form of examination; ②.分数构成 grading policy; ③如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

平时作业30%, 课题答辩20%, 三小时期末考试50%

Assignments 30%, Presentation 20%; 3-hour final examination 50%

12. 教材及其它参考资料

Textbook and Supplementary Readings

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition. (Cambridge University Press, 2011).

Reading Materials:

Cover, T. M. & Thomas, J. A. Elements of Information Theory: 2nd Edition

(Wiley Interscience, 2006)

Vedral, V. Introduction to Quantum Information Science

(Oxford Graduate Textzs, 2006)