

课程详述

COURSE SPECIFICATION

以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联 系授课教师。

The course information as follows may be subject to change, either during the session because of unforeseen circumstances, or following review of the course at the end of the session. Queries about the course should be directed to the course instructor.

directed to the course instructor.								
1.	课程名称 Course Title	数学物理方法 Mathematical Methods in Physics						
2.	授课院系 Originating Department	物理系 Department of Physics						
3.	课程编号 Course Code	PHY203-15						
4.	课程学分 Credit Value	4						
5.	课程类别 Course Type	专业基础课 Major Foundational Course						
6.	授课学期 Semester	秋季 Fall						
7.	授课语言 Teaching Language	中英双语 English & Chinese						
8.	授课教师、所属学系、联系方式(如属团队授课,请列明其他授课教师)	石兴强,助理教授,物理系 第二科研楼 226 室 SHI Xingqiang, Assistant Professor, Department of Physics						
	Instructor(s), Affiliation& Contact (For team teaching, please list all instructors)	Rm. 226, No. 2 Research Bldg. shixq@sustech.edu.cn 0755-88018206						
9.	实验员/助教、所属学系、联系 方式 Tutor/TA(s), Contact	待公布 To be announced						
10.	选课人数限额(可不填) Maximum Enrolment (Optional)	t						
11.	授课方式 Delivery Method	讲授	习题/辅导/讨论	实验/实习	其它(请具体注明)	总学时		
	Delivery Method	Lectures	Tutorials	Lab/Practical	Other (Please specify)	Total		
	学时数 Credit Hours	58	6	无	无	64		

先修课程、其它学习要求

12. Pre-requisites or Other Academic Requirements

Other 高等数学 A 下(MA102B),大学物理 B 下(PHY105B),线性代数 A(MA107A)

后续课程、其它学习规划

13. Courses for which this course is a pre-requisite

本课程为物理专业基础课,是部分专业核心课的先修课程。

This course is a Major Foundation Course of physical courses, to prepare for the mathematics expected in more advanced physical courses.

14. 其它要求修读本课程的学系 Cross-listing Dept.

教学大纲及教学日历 SYLLABUS

15. 教学目标 Course Objectives

数学物理方法是物理专业的必修基础课。本课程教授学生如何使用数学工具和技术来解决物理问题;使学生学到相关基础知识,并引导学生从纯数学的学习转到将数学应用于实际物理问题。

As the Major Foundation of physical courses, this course aims to introduce how to use mathematics as a tool & technique to deal with physical problems. From the course, students should transform from learning pure mathematics to using mathematics as a tool to treat real physical problems.

16. 预达学习成果 Learning Outcomes

掌握复变函数、数学物理方程和特殊函数的基本概念和理论。能用留数定理计算积分、提高抽象思维能力和符号运算能力、以及能把物理问题写成数学方程和边界条件等。

Master functions of a complex variable, ordinary and partial differentials closely related to physical problems and special functions. Master using the residue theorem to calculate definite integrals; improve abilities in abstract thinking and symbolic calculation, and formulate physical problems into mathematical language in differential equations and boundary conditions.

17. 课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明主讲人)

Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if this is a team teaching or module course.)

- 1). Complex numbers and hyperbolic functions
 - Week 1: Manipulation of complex numbers, Polar representation of complex numbers, de Moivre's theorem
- Week 2: Complex logarithms and complex powers, Applications to differentiation and integration, Hyperbolic functions
- 2). Complex variables
 - Week 3: Functions of a complex variable, The Cauchy-Riemann relations
- Week4: Power series in a complex variable, Multivalued functions and branch cuts, Singularities and zeros of complex functions,
 - Week 5: Complex integrals, Cauchy's theorem, Cauchy's integral formula
 - Week 6: Taylor and Laurent series, Residue theorem, Definite integrals using contour integration
- 3). Partial differential equations: general and particular solutions
 - Week 7: Important partial differential equations, General form of solution, General and particular solutions

Week 8: The wave equation, The diffusion equation, Characteristics and the existence of solutions

Week 9: Midterm examination

4). Partial differential equations: separation of variables

Week 10: Separation of variables: the general method, Superposition of separated solutions

Week 11: Separation of variables in polar coordinates

5). Series solutions of ordinary differential equations

Week 12: Second-order linear ordinary differential equations

Week 13: Series solutions about an ordinary point, Series solutions about a regular singular point

6) Special functions

Week 14: Legendre functions, Associated Legendre functions

Week 15: Spherical harmonics

Week 16: Bessel functions

1). 复函数和双曲函数

第1周:复数运算、极坐标表示、de Moivre's 定理

第2周:复函数(对数、幂级数),复数简单的应用、微分和积分,双曲函数

2). 复变量函数的微积分

第3周:复变函数、复变函数微分、Cauchy-Riemann 关系

第4周:复数项幂级数,多值函数,函数的奇点、零点

第5周:复变函数的环路积分,Cauchy 定理、Cauchy 积分公式

第6周: Taylor 级数和 Laurent 级数、留数定理、用留数定理计算定积分

3). 偏微分方程: 通解和特解

第7周: 重要的偏微分方程、通解、通解和特解

第8周:波动方程、扩散方程;解的特征

第9周:期中考试

4). 偏微分方程: 分离变量法

第10周:分离变量法、解的叠加

第 11 周:极坐标系下的分离变量法

5). 常微分方程的级数解

第12周:二阶线性常微分方程

第13周: 常点的级数解、奇点的级数解

6) 特殊函数

第 14 周: Legendre 函数, 连带 Legendre 函数

第15周: 球谐函数

第 16 周: Bessel 函数

18. 教材及其它参考资料 Textbook and Supplementary Readings

教材:

Mathematical Methods in the Physical Sciences, by Mary L. Boas. The third Edition; Wiley

其他参考资料:

Mathematical Methods for Physics and Engineering; Third Edition; K.F. RILEY, M.P. HOBSON and S. J. BENCE; Cambridge university press

Essential Mathematical Methods for Physicists; Hans J. Weber and George B. Arfken, Academic Press

课程评估 ASSESSMENT

19.	评估形式 Type of Assessment	评估时间 Time	占考试总成绩百分比 % of final score	违纪处罚 Penalty	备注 Notes
	出勤 Attendance				
	课堂表现 Class Performance		15		
	小测验 Quiz	1			
	课程项目 Projects		080		
	平时作业 Assignments		30%		
	期中考试 Mid-Term Test		30%		
	期末考试 Final Exam		40%		
	期末报告 Final				
	Presentation 其它(可根据需要				
	改写以上评估方 式) Others (The				
	above may be modified as				

_		
necessary)		

20. 记分方式 GRADING SYSTEM

☑ A. 十三级等级制 Letter Grading

□ B. 二级记分制(通过/不通过) Pass/Fail Grading

课程审批 REVIEW AND APPROVAL

21. 本课程设置已经过以下责任人/委员会审议通过

This Course has been approved by the following person or committee of authority

物理系教学指导委员会

Education Instruction Committee of Physics department

