课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	高等机器人控制 Advanced Control for Robotics
2.	课程性质 Compulsory/Elective	专业课/Elective
3.	课程学分/学时 Course Credit/Hours	3 学分/48 学时 3 Credits /48 Hours
4.	授课语言 Teaching Language	英文 English
5.	授课教师 Instructor(s)	张巍 Wei Zhang
6.	是否面向本科生开放 Open to undergraduates or not	否 no
7.	先修要求 Pre-requisites	研究生: 无

8. 教学目标

Course Objectives

本课程主要目的是培养机器人方向的研究生数学、优化与控制基础。教学生如何辨识、刻化、和求解机器人中的优化问题。内容包括高等机器人动力学以及其与优化的关系、最优控制、轨迹优化、模型预测控制、足式机器人最优控制等。

The objective of this course is for students to develop the ability to recognize, formulate, and solve optimization problems within the context of robotics applications. We will consider a range of classical problems spanning dynamics, identification, control, and estimation, and show how they can be posed as constrained optimization problems. An emphasis will be placed on developing competency in control and optimization theory and on applications within legged robotics.

9. 教学方法

Teaching Methods

课堂讲授,课后习题,和大作业 Lecture and projects

10. 教学内容 (需要写到 section 16)

Course Contents

Section 1	相关数学与优化背景介绍 Math and Optimization Review
Section 2	空间向量、空间力与空间动量 Spatial Vector, forces, and Momentum
Section 3	多刚体动力学 Multibody Dynamics
Section 4	接触模型 Modeling Contacts
Section 5	最优控制基础 Introduction to Optimal Control

Section 6	多刚体动力学的最优控制解释 Rigid Body Dynamics as an Optimal Control Problem
Section 7	ABA 算法 Articulated Body Algorithm
Section 8	Pontryagin 最大值原理 Pontrayagin's Principle
Section 9	轨迹优化 Trajectory Optimization
Section 10	微分动态规划 Differential Dynamic Programming
Section 11	模型预测控制算法 Model Predictive Control Algorithm
Section 12	模型预测控制理论 Model Predictive Control Theory
Section 13	足式机器人简化模型 Simple models of locomotion
Section 14	足式机器人动力学分析 Dynamics of Legged robot
Section 15	足式机器人模型预测控制 Model Predictive Control for Legged Robot
Section 16	大作业项目汇报 Project Presentation

11. 课程考核

Course Assessment

Homework (30%), Programming Assignment (20%), Midterm (25%), Final Project 25%

12. 教材及其它参考资料

Textbook and Supplementary Readings

Rigid-Body Dynamics Algorithms - Roy Featherstone Calculus of Variations and Optimal Control Theory - Daniel Liberzon

A Mathematical Introduction to Robotic Manipulation - Richard M. Murray, Zexiang Li, S. Shankar Sastry