# 课程大纲 COURSE SYLLABUS

|    | COURSESTEEMBOS                                |                                                                                                                                                                                                                                              |  |  |  |
|----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1. | 课程代码/名称<br>Course Code/Title                  | MAT8028 科学计算<br>MAT8028 Scientific Computing                                                                                                                                                                                                 |  |  |  |
| 2. | 课程性质<br>Compulsory/Elective                   | 专业必修课 Compulsory                                                                                                                                                                                                                             |  |  |  |
| 3. | 课程学分/学时<br>Course Credit/Hours                | 3/48                                                                                                                                                                                                                                         |  |  |  |
| 4. | 授课语言<br>Teaching Language                     | 英文 English                                                                                                                                                                                                                                   |  |  |  |
| 5. | 授课教师<br>Instructor(s)                         | Alexander Kurganov, 讲席教授<br>Alexander Kurganov, Chair Professor                                                                                                                                                                              |  |  |  |
| 6. | 是否面向本科生开放<br>Open to undergraduates<br>or not | 是 Yes                                                                                                                                                                                                                                        |  |  |  |
| 7. | 先修要求<br>Pre-requisites                        | (如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.) MA101b& 102b 高等数学 I&II,MA103b 线性代数 I,MA201a 常微分方程 a MA101b& 102b Calculus I&II,MA103b Linear Algebra I,MA201a Ordinary Differential Equations a |  |  |  |

#### 8. 教学目标

#### **Course Objectives**

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

教给学生基本的和现代的科学计算方法,提供对基本问题的彻底解决方法,以及数值方法的适用性和优缺点。

To teach the students both basic and modern techniques in scientific computing as well as to provide an in-depth treatment of fundamental issues and methods and the reasons behind success and failure of numerical methods and software.

### 9. 教学方法

#### **Teaching Methods**

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

理论与编程并重,并辅以前沿课题应用

Teaching in both theory and programming, including applications to cutting edge problems

# 10. 教学内容

#### **Course Contents**

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

| Section 1 | Principles of Numerical Mathematics |
|-----------|-------------------------------------|
|           |                                     |

|           | a. Well-posedness                                                    |
|-----------|----------------------------------------------------------------------|
|           | b. Stability and convergence of numerical methods                    |
|           | c. A-priori and a-posteriori analysis                                |
|           | d. Sources of error in computational models                          |
|           | e. Machine representation of numbers                                 |
| Section 2 | Polynomial Interpolation                                             |
|           | a. Lagrange polynomial interpolation and their Newton forms          |
|           | b. Hermite polynomial interpolation                                  |
|           | c. Piecewise polynomial interpolation                                |
|           | d. Approximation by splines, B-splines                               |
| Section 3 | Numerical Differentiation and Integration                            |
|           | a. Finite-difference approximations of derivatives                   |
|           | b. Interpolatory quadratures                                         |
|           | c. Newton-Cote formulae                                              |
|           | d. Romberg integration                                               |
|           | e. Automatic integration                                             |
|           | f. Singular integrals                                                |
|           | g. Multidimensional numerical integration                            |
| Section 4 | Solutions of Linear Systems of Equations                             |
|           | a. Linear Operators on Normed Spaces, vector and matrix norms        |
|           | b. Direct methods - LU factorization; Cholesky factorization         |
|           | c. Iterative methods - Jacobi, Gauss-Seidel, SOR, Conjugate Gradient |
|           | d. Conditioning and condition number                                 |
|           | e. Multi-grid methods                                                |
|           | f. Domain decomposition techniques                                   |
| Section 5 | Eigenvalue Problem                                                   |
|           | a. Power method                                                      |
|           | b. Householder's reflection, Given's rotation, and QR factorization  |
|           | c. The singular value decomposition (SVD)                            |

|           | d. Lanczos' method                                                                                                              |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|
| Section 6 | Least Squares Problems and Orthogonal Polynomials in Approximation Theory                                                       |
|           | a. Least-squares approximation and normal equations                                                                             |
|           | b. Orthogonal polynomials                                                                                                       |
|           | c. Gaussian quadrature with orthogonal polynomials                                                                              |
|           | d. Rational function approximation                                                                                              |
|           | e. Approximation by Fourier trigonometric polynomials                                                                           |
|           | f. Fast Fourier transforms                                                                                                      |
|           | g. Gaussian quadrature over unbounded intervals                                                                                 |
|           | h. Approximation of function derivatives (classical finite differences, compact finite differences, pseudo-spectral derivative) |
| Section 7 | Solutions of Nonlinear Systems of Equations                                                                                     |
|           | a. Fixed-point iterations (the banach fixed-point theorem and convergence results)                                              |
|           | b. Newton's methods and quasi-Newton's methods                                                                                  |
|           | c. Steepest descent methods                                                                                                     |
|           | d. Stopping criteria                                                                                                            |
|           | e. Post-processing techniques for iterative methods                                                                             |

# 11. 课程考核

### **Course Assessment**

(①考核形式 Form of examination; ②.分数构成 grading policy; ③如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

作业(30%)+期中(30%)+期末考试(40%)

Assignment (30%) + Mid-term exam(30%) + final-term exam (40%)

### 12. 教材及其它参考资料

### **Textbook and Supplementary Readings**

参考教材 Textbook:

- 1. Numerical Mathematics, 2nd Edition, by Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri, Springer, 2007
- 2. An Introduction to Numerical Analysis, 2nd edition, by Kendall E. Atkinson, John Wiley & Sons,

# 1989

- 3、A First Course in Numerical Methodss, by Uri M. Ascher and Chen Greif, SIAM, 2011
- 4、A Theoretical Introduction to Numerical Analysis, by Victor S. Ryaben 'kii and Semyon V. Tsynkov, Chapman and Hall/CRC, 2006