课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	MAT8021 代数拓扑 Algebraic Topology
2.	课程性质 Compulsory/Elective	Compulsory
3.	课程学分/学时 Course Credit/Hours	3/48
4.	授课语言 Teaching Language	英文教材 English Textbook, 中英文授课 Lecture in Chinese and English
5.	授课教师 Instructor(s)	朱一飞 Zhu Yifei
6.	是否面向本科生开放 Open to undergraduates or not	是 Yes
7.	先修要求 Pre-requisites	(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.) MA323 拓扑学 MA323 Topology

8. 教学目标

Course Objectives

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

本课程为研究生几何与拓扑方向的两门核心必修课程之一,另一门为 MAT8024 微分流形。主要内容包括同调和上同调。

对于本科生,这是 MA323 拓扑学的后续课程,在基本群、覆叠映射之外进一步发展可计算的代数工具,来定性地研究空间。

This is a half of the graduate core courses in Geometry and Topology, the other half being MAT8024 Differentiable Manifolds. The main topics are homology and cohomology.

For undergraduate students, this is a sequel to MA323 Topology, developing further algebraic (and computable) machinery beyond the fundamental group and covering maps to analyze spaces qualitatively.

9. 教学方法

Teaching Methods

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

课堂讲授、平时作业、期末考试

Lectures, assignments, and a final exam

10. 教学内容

Course Contents

(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

Section 1	Preliminaries,	预备知识

Section 2	Homology, 同调
Section 3	Cohomology, 上同调
Section 4	Further Topics,进阶内容
Section 5	
Section 6	
Section 7	
Section 8	
Section 9	
Section 10	

11. 课程考核

Course Assessment

(①考核形式 Form of examination; ②.分数构成 grading policy; ③如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the difference.)

50%平时作业,50%期末考试

50% Assignments, 50% Final Exam

12. 教材及其它参考资料

Textbook and Supplementary Readings

- 1. Algebraic Topology, by Allen Hatcher
- 2. Differential forms in algebraic topology, by Raoul Bott and Loring Tu
- 3. 同调论,姜伯驹著