# 课程大纲 COURSE SYLLABUS

| 1. | 课程代码/名称<br>Course Code/Title                  | MAT7080 组合数学专题 Topics in Combinatorics                                                             |
|----|-----------------------------------------------|----------------------------------------------------------------------------------------------------|
| 2. | 课程性质<br>Compulsory/Elective                   | 选修 Elective                                                                                        |
| 3. | 课程学分/学时<br>Course Credit/Hours                | 3                                                                                                  |
| 4. | 授课语言<br>Teaching Language                     | 英文<br>English                                                                                      |
| 5. | 授课教师 Instructor(s)                            | 向青教授,李才恒教授,刘博辰副教授<br>Qing Xiang, Professor; Caiheng Li, Professor; Bochen Liu, Associate Professor |
| 6. | 是否面向本科生开放<br>Open to undergraduates<br>or not | 是 Yes                                                                                              |
| 7. | 先修要求<br>Pre-requisites                        | MA103b 线性代数 I & II,MA214 抽象代数<br>MA103b Linear Algebra, MA214 Abstract Algebra                     |

### 8. 教学目标 Course Objectives

本课程介绍组合数学的几个分支的前沿研究,主要内容包括关联几何(特别是有限几何),极值组合,代数编码,代数/极值图论。

This course will introduce cutting edge research in several areas of combinatorics. The main topics will involve incidence geometry (in particular, finite geometry), extremal combinatorics, algebraic coding theory and algebraic/extremal graph theory.

### 9. 教学方法 Teaching Methods

将采用传统方式教授此课(版书,课堂讨论,作业,课外答疑,闭卷考试)

The course will be taught in the standard way ("chalk and board", in-class discussion, homework, office hours, closed-book exams).

#### 10. 教学内容 Course Contents

| Section 1 | Introduction  |
|-----------|---------------|
| Section 2 | Vector Spaces |
| Section 3 | Forms         |
| Section 4 | Geometries    |

|     | Section 5   | Combinatorial Applications (e.g. The finite field Kakeya problem) |
|-----|-------------|-------------------------------------------------------------------|
|     | Section 6   | Turan numbers of bipartite graphs                                 |
|     | Section 7   | Erdos-Ko-Rado type theorems                                       |
|     | Section 8   | MDS codes                                                         |
|     | Section 9   | Spread and ovoids in polar spaces                                 |
|     | Section 10  | Generalized quadrangles/polygons                                  |
|     | Section 11  | Incidence graphs of generalized polygons                          |
|     | Section 12  | LDPC codes from geometries                                        |
|     | Section 13  |                                                                   |
|     | Section 14  |                                                                   |
| 11. | 课程老核 Course | e Assessment                                                      |

#### 11. 课程考核 Course Assessment

作业(40%)+期末考试(60%)

Assignment (40%) + Final Exam (60%)

## 12. 教材及其它参考资料 Textbook and Supplementary Readings

- 1. Finite geometry and combinatorial applications, by Simeon Ball
- 2. Polynomial Methods in Combinatorics, by Larry Guth
- 3. Incidence Geometry, Eric Moorhouse