课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	MAE5030 格子波尔兹曼方法的理论与应用 The theory and application of lattice Boltzmann method
2.	课程性质 Compulsory/Elective	专业选修课
3.	课程学分/学时 Course Credit/Hours	3/48
4.	授课语言 Teaching Language	英语
5.	授课教师 Instructor(s)	单肖文
6.	先修要求 Pre-requisites	

7. 教学目标

Course Objectives

Give a rudimentary review of kinetic theory and its application in CFD software. Quickly bring the students up to speed with the current research in the lattice Boltzmann method.

8. 教学方法

Teaching Methods

Lecture

9. 教学内容

Course Contents

Section 1	1.1 The statistical physics of fluids
Section 2	1.2 The Boltzmann equation
Section 3	1.3 A brief history of lattice gas and lattice Boltzmann method
Section 4	2.2 The non-dimensionalization of Boltzmann-BGK equation
Section 5	2.3 The conservation laws and hydrodynamics
Section 6	2.4 The ES collision model
Section 7	2.5 Polyatomic gases
Section 8	3.1 Discretization of the Boltzmann-BGK equation
Section 9	3.2 Chapman-Enskog approximation
Section 10	3.3 Lattice-Boltzmann Equations and extensions
Section 11	3.4 High-order lattices
Section 12	3.5 The multi-relaxation-time collision models
Section 13	4.1 The classic thermodynamic theory of phase transition
Section 14	4.2 The kinetic theory of non-ideal gases
Section 15	4.3 The pseudo-potential non-ideal gas model
Section 16	5.1 Non-ideal gas mixtures

10. 课程考核

Course Assessment

	考查,平时作业 50%,project50%	
11.	教材及其它参考资料 Textbook and Supplementary Readings	
	无	