课程大纲 COURSE SYLLABUS

1.	课程代码/名称 Course Code/Title	MAE5026 海外专家讲学 Lectures from Oversea Experts
2.	课程性质 Compulsory/Elective	选修、Elective
3.	课程学分/学时 Course Credit/Hours	1 学分 / 16 学时
4.	授课语言 Teaching Language	英语
5.	授课教师 Instructor(s)	Luca Biferale
6.	先修要求 Pre-requisites	无

7. 教学目标

Course Objectives

The course is meant to introduce students to open problems to understand basic properties of turbulent flows for both Eulerian and Lagrangian descriptions, with focus on large- and small-scale statistics, deviations from Gaussian behavior, direct and inverse cascades. Finally, we shortly present a couple of applications to Helical and Rotating flows in finite or infinite volumes.

本课程旨在向学生介绍欧拉和拉格朗日描述的湍流中的开放性问题,重点是不同尺度的统计特性,直接和反向级联。最后,我们简要介绍有限或无限体积中的螺旋和旋转流动的几个应用。

8. 教学方法

Teaching Methods

板书+PPT

9. 教学内容

Course Contents

Section 1	Introduction to statistical description of Turbulent flows: real space, Fourier space and scale-filtered representation.
Section 2	Introduction to statistical description of Turbulent flows: ergodicity, definitions of spectra, flux and high order statistics (Flatness, Skewness)
Section 3	Multi-scale statistics: non-Gaussian statistics, intermittency, sub-grid energy flux, multifractal phenomenology (Eulerian)
Section 4	Lagrangian turbulence: tracers, inertial particles, self-propelling particles. Preferential concentration and temporal statistical properties.
Section 5	Homogeneous and Isotropic flows: state of the art in 3d. Direct energy cascade. K41 Theory and corrections to it.
Section 6	Homogeneous and Isotropic flows: state of the art in 2d. Inverse energy cascade and direct enstrophy cascade. Kraichnan-Batchelor theory.
Section 7	Helical properties in 3d flows. Eulerian and Lagrangian (helicoids).
Section 8	Effects of Rotation: transition from direct to split energy cascades.

10. 课程考核

Course Assessment

请再此注明: ①考查/考试; ②分数构成。

考察;出勤+报告

11. 教材及其它参考资料

Textbook and Supplementary Readings

- [1] U. Frisch. Turbulence (Cambridge University Press, 1995)
- [2] S.B. Pope. Turbulent Flows (Cambridge University Press, 2000)
- [3] A. Alexakis and L. Biferale. Cascades and transitions in turbulent flows. Phys. Rep. 2018 https://doi.org/10.1016/j.physrep.2018.08.001 arXiv:1808.06186
- [4] F. Toschi and E. Bodenschatz. Lagrangian Properties of Particles in Turbulence. Annu. Rev. Fluid Mech. 41, 375 (2009)