Frequently Asked Questions
unittest v1.3-0 (2017-11-01)

Contents

1 General 1
1.1 How do | test error conditions? 1
1.2 How do | test multivalue results? 1
1.3 Grouping tests 2
1.4 | am sure | do not need to test my code. Is thistrue?, 2

2 Working with packages 2
2.1 I'm writing a package, how do | put tests init? 2
2.2 How do | test un-exported package functions? 3

1 General

1.1 How do | test error conditions?

Define a helper function test_for_error that uses trycatch. If your test results in an error that does not match, then the
test fails and the actual error will be included in your test results.

test_for_error <- function(code, expected_regexp) {
tryCatch ({
code
return("No error returned")
}, error = function(e) {
if (grepl (expected_regexp, e$message)) return(TRUE)
return(c(e$message, "Did not match:-", expected_regexp))

For example, here is a function that will throw an error for a bad argument

add_four <- function(x) {
if(! is.numeric(x)) stop("x must be numeric")
return(x+4)

Then we can test the argument check like this

ok(test_for_error(add_four("a"), "must be numeric"), "add_four() argument not numeric throws error")

ok - add_four() argument not numeric throws error

1.2 How do | test multivalue results?
Use all.equal(...)
a <- ¢(1,2,3)

b <-1:3
ok(all.equal(a,b), "a and b are equal")

ok - a and b are equal

Alternatively, the following helper function will give coloured output showing what's different

cmp <- function(a, b) {
if (identical(all.equal(a,b), TRUE)) return(TRUE)

if (file.exists(Sys.which('git'))) {
totmp <- function(x) {

f <- tempfile(pattern = "str.")
capture.output (str(x,

vec.len = 1000,

digits.d = 5,

nchar.max = 1000), file = f)
return(f)

}

return(suppressWarnings (system2(
Sys.which('git'),

c("diff", "--no-index", "--color-words", totmp(a), totmp(b)),
input = "",
stdout = TRUE, stderr = TRUE)))
}
return(c(
capture.output(str(a)),
"... does not equal...",
capture.output (str(b))
))

To see the coloured output, try the following:

ok(cmp(1:3, 1:8))

1.3 Grouping tests

When dealing with many unit tests in one file it can be useful to group related unit tests.
The ok_group() function is used like this

ok_group("Test addition", {
ok(1 + 1 == 2, "Can add 1")
ok(1 + 3 == 4, "Can add 3")

b
ok_group("Test subtraction", {
ok(1 - 1 == 0, "Can subtract 1")
ok(1 - 3 == -2, "Can subtract 3")
b

which produces the following output

Test addition
ok - Can add 1
ok - Can add 3

Test subtraction
ok - Can subtract 1
ok - Can subtract 3

1.4 | am sure | do not need to test my code. Is this true?
No. Sit down and have a cup of tea. Hopefully the feeling will go away.
2 Working with packages

2.1 I'm writing a package, how do | put tests in it?

Add the following line to the package pEscrIpTION file.

Suggests: unittest

Create a directory called tests in your package source, alongside your r directory.
Place your tests in a file with the extension .r and add the following lines to the top of the file (replacing mypackage
with the name of your package).

library(mypackage)
library(unittest, quietly = TRUE)

That's it; B ¢MD check will run the tests and fail if any of the tests fail.

Any .& file in the tests directory will be run by R cMD check.

When you use the unittest package the package “knows"” that it is being run by cMp check and at the end of the tests it
produces a summary of the results. The package will also throw an error if any tests fail; throwing an error will in turn
cause CMD check to report the error and fail the check.

Here is a very simple example:
Assuming your package contains (and exports) the function biggest()

biggest <- function(x,y) {max(c(x,y))}

then the tests/my_tests_for_biggest.R file could contain something like

library(mypackage)
library(unittest, quietly = TRUE)

ok(biggest(3,4) == 4, "two numbers")
ok(biggest(c(5,3),c(3,4)) == 5, "two vectors")

2.2 How do | test un-exported package functions?

If you have some unit tests which require access to un-exported functions, or un-exported S3 methods, you can use

local.
local({
ok(internal_function() == 3)
ok(another_internal_function() == 4)
ok(final_internal_function() == 5)

}, asNamespace('mypackage'))

	General
	How do I test error conditions?
	How do I test multivalue results?
	Grouping tests
	I am sure I do not need to test my code. Is this true?

	Working with packages
	I'm writing a package, how do I put tests in it?
	How do I test un-exported package functions?

