The Command Pattern in R

Michael Lawrence

August 25, 2014

Contents

(1__Introduction| 1
|2 Example pipelines| 2
[3sessionInfol 8

1 Introduction

Command pattern is a design pattern used in object-oriented programming, in this design, an object en-
capsulate commands and all other information needed for a later method call. Command pattern based
examples include analysis pipeline, parallel processing, GUT action or do/undo.

A typical command pattern including some key features

e Command declare an interface for performing/executing operations.

ConcreteCoommand implements the Command interface and its own concrete execute method, invok-
ing operations on Receiver.

e (lient creates ConcreteCommand object and sets the receiver.

Invoker decides the time a method is called, ask command to perform a request.
e Receiver contains methods and knows how to perform operations.

commandr is a R package which use S4 representation to implement Command pattern in R. In this
package, we follow the essential design of Command pattern to implemented a flexible analytical pipeline
which including following components.

e Top level virtual class Command.

e Class Pipeline is a subclass of class Command, and a very important concept in this package. A
Pipeline is composed of a sequence of Protocols. A Pipeline object is similar to CommandManager in
Command pattern, accept different Command(the Protocol) in queued order. The client in Command
pattern would be R user either through command line or a GUI.

e A PipelineData is also a virtual class, just represent a container for a dataset and an attached pipeline
which described how this object generated from a sequence of protocols. For this implementation, it’s
equally applied to any data set have a slot or attribute called 'pipeline’. A PipelineData is the receiver
in Command pattern.

e A Stage is an abstract step in a pipeline, represents a role to be played by protocols in a pipeline, each
stage transforms one data in a particular way, multiple transformation could be defined in different
Protocols for each Stage. Users could define new types of stages with method setStage. When a
stage is set, specific input type or output type for this stage could be specified. So that a chained
Pipeline could be validated which check the input/output data type. In this way, the development
could fairly independent as long as we conform to data types for input/output, without worrying
about transformation details.

e A Protocol(method) object performs a particular Stage, and it’s a concrete step in a pipeline. Users
could set different Protocols by using method setProtocol. A Protocol implementation would be
ConcreteCommand in Command pattern.

So as described above, a pipeline is composed of many Stages (steps) and each stage coould implement as
many Protocols(methods) as possible. So you can define (or chain) your pipeline with a sequence of different
protocols.

The description in this section may be too abstract to understand the usage easily, so let’s go through a
very simple example in the following section.

2 Example pipelines

In this section, let’s try a simple case, even though, once you get familiar yourself with the usage, it
could be extended to more complicated real-world cases. For example, a complicated GC/MS process-
ing pipeline(chroamtoplots) has been successfully built based on implementation of this package. You could
explore the data by forming different pipeline and compare the methods you implemented.

Back to our mini-example, let’s first set some goals about this pipeline before we move on.

e Goal: Processing a vector which may contains numeric values, missing value(NA), remove or replace
some missing values and compute averaged summary on the processed data.

e Stages:

— Stage 1: Remove missing value.

* Protocol 1: simply remove the missing value.
*x Protocol 2: replace missing value with an arbitrary value, by default 0.
*x Protocol 3: remove missing value and get numeric value only from an arbitrary range.

— Stage 2: Perform statistics computation(average) on processed data.
* Protocol 1: compute mean.
* Protocol 2: compute median.
e Form different pipline

This pipeline is implemented in the following code trunk.

> library(commandr)
> ## let's name the first stage 'trim' and specify input types
> setStage("trim", intype = "numeric")

[1] "trim"

> ## a class called 'StageTrim' is defined automatically
> ## then we implemnted protocol 1, 2, 3 for this stage
> setProtocol ("remove", fun = function(x){x[!is.na(x)]}, parent = "trim")

[1] "ProtoTrimRemove"

> setProtocol("replace", representation = list(val = "numeric"),
+ fun = function(x, val = 0){

+ x[is.na(x)] <- val

+ X

+ }, parent = "trim")

[1] "ProtoTrimReplace"

> setProtocol("range", representation = list(low = "numeric", high = "numeric"),
+ fun = function(x, low = 0, high = Inf) x[x >= low & x <= high & !is.na(x)],
+ parent = "trim")

[1] "ProtoTrimRange"

> ## let's name the second stage 'average' and specify input types
> setStage("average", intype = "numeric")

[1] "average"

> ## implement protocol 1 and 2 for stage 1
> setProtocol("mean", fun = mean, parent = "average")

[1] "ProtoAverageMean"

> setProtocol("quantile", representation = list(probs = '"numeric"),
+ fun = quantile, parent = "average")

[1] "ProtoAverageQuantile"

d <-c(1, 2, 3, NA, 5, 6, 7)

First pipepine: 1. remove missing value 2. compuate mean
by default, use default protocol for each stage

p <- Pipeline("trim", "average")

perform(p, d)

vV V.V Vv VvV

[1] 4

attr(,"pipeline")

Pipeline with 2 protocol(s):
[1] trim (remove)

[2] average (mean)

Second pipepine: 1. replcae missing value with 100. 2. compuate mean
make another pipeline easily
p <- Pipeline(Protocol("trim", "replace", val = 100),

"average")

vV + Vv VvV

perform(p, d)

[1] 17.71429
attr(,"pipeline")

Pipeline with 2 protocol(s):
[1] trim (replace)

[2] average (mean)

> ## Third pipepine: 1. remove missing value and get value above 2. 2. compuate quantile
> p <- Pipeline(Protocol("trim", "range", low = 2),

+ Protocol("average", "quantile", probs = 0.75),

+ displayName = "Filter and Average")

> perform(p, d)

75%
6
attr(,"pipeline")
Pipeline with 2 protocol(s):
[1] trim (range)
[2] average (quantile)

Now you basically get an idea about how to form pipelines easily and flexibly with defined protocols. So
basically, you need to define stages for your pipeline, and then implement as many protocols as you want
for each stage. Then construct your pipeline by using constructor Pipeline, and pass protocols in the right
order. Please pay attention to that

e The default stage protocol method is the one first defined for the stage.

e When use method Protocol, make sure they try to use default protocol first unless you pass the
protocol name as second argument.

Some accessor are provided for object Pipeline.

> ## accessor
> inType(p)

[1] "numeric"
> outType(p)
[1] "numeric"
> parameters(p)

[[1]1]
[[11]%1low
[1] 2

([1]11$high
[1] Inf

[[1]1]%active
[1] TRUE

[[2]]
[[2]]1$probs
[1] 0.75

[[2]]$active
[1] TRUE

> protocol(p, "average")

average (quantile)
> displayName (p)
[1] "Filter and Average"

> ## find a protocol via protocol name
> findProtocols(p, "average')

(1] 2

It’s very important to keep in mind that a pipline require your input/output data type match each
other in the sequence of protocols. So when define your protocol for each stage, make sure you follow rules
made in the stage definition.

Pipeline is essentially a list, so you can use typical method to subset/re-order pipeline or insert a
protocol. But again, keep in mind, an validation step for data input type and output type is always performed
when do so. More subseting method are defined via tail,head, in a slightly different way which you specify
a specific input type or output type to subset the pipeline. More information coudl be find under the manual
for function Pipeline(run help(’Pipeline’)). Or just get an idea about it by run through following
examples.

e Goal: We cast a numeric value to character, then to factor, and finally to a list.

> # make a new example
> setStage ("DemoCastN2C", intype = "numeric", outtype = "character")

[1] "demoCastN2C"

> setProtocol("cast", fun = function(x){

+ message ("Convert from numeric to character")
+ as.character (x)
+
+

},
parent = "DemoCastN2C")

[1] "ProtoDemoCastN2CCast"
> setStage("DemoCastC2F", intype = "character", outtype = "factor")
[1] "demoCastC2F"

> setProtocol("cast", fun = function(x){

+ message ("Convert from character to factor")
+ as.factor(x)

+ 7,

+ parent = "DemoCastC2F")

[1] "ProtoDemoCastC2FCast"
> setStage("DemoCastF2L", intype = "factor", outtype = "list")
[1] "demoCastF2L"

> setProtocol("cast", fun = function(x){

+ message ("Convert from factor to list")
+ as.list(x)

+ +,

+ parent = "DemoCastF2L")

[1] "ProtoDemoCastF2LCast"

>d<-1:3

> p <- Pipeline(Protocol("DemoCastN2C"),
+ Protocol ("DemoCastC2F"),
+ Protocol ("DemoCastF2L"))
>p

Pipeline with 3 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)
[3] demoCastF2L (cast)

> perform(p, d)

[[1]1]
[1] 1
Levels: 1 2 3

[[2]1]
[1]1 2
Levels: 1 2 3

[[3]]
[1] 3
Levels: 1 2 3

attr(,"pipeline")

Pipeline with 3 protocol(s):
[1] demoCastN2C (cast)

[2] demoCastC2F (cast)

[3] demoCastF2L (cast)

> # subsetting

> # convert to a factor
> pl2 <- p[1:2]

> p12

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)

> perform(pl2, d)

[11] 1 23

attr(,"pipeline")

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)

[2] demoCastC2F (cast)
Levels: 1 2 3

> #
> p23 <- pipeline(p, intype = "character")
> p23

Pipeline with 2 protocol(s):
[1] demoCastC2F (cast)
[2] demoCastF2L (cast)

> perform(p23, as.character(d))

[[1]1]
[1] 1
Levels: 1 2 3

[[2]1]
[1] 2
Levels: 1 2 3

[[3]]
[1] 3
Levels: 1 2 3

attr(,"pipeline")

Pipeline with 2 protocol(s):
[1] demoCastC2F (cast)

[2] demoCastF2L (cast)

> #
> pl12 <- head(p, 2)
> pl2

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)

> #or
> head(p, outtype = "factor")

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)

> head(p, role = "DemoCastC2F")

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)

> tail(p, 2)

Pipeline with 2 protocol(s):
[1] demoCastC2F (cast)
[2] demoCastF2L (cast)

> tail(p, intype = "character")

Pipeline with 2 protocol(s):
[1] demoCastC2F (cast)
[2] demoCastF2L (cast)

> tail(p, intype = "factor")

Pipeline with 3 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)
[3] demoCastF2L (cast)

> tail(p, role = "DemoCastC2F")

Pipeline with 1 protocol(s):
[1] demoCastF2L (cast)

#combination

pl <- Pipeline(Protocol ("DemoCastN2C"))
p2 <- Pipeline(Protocol ("DemoCastC2F"))
p3 <- Pipeline(Protocol("DemoCastF2L"))
c(pl ,p2)

vV V.V Vv Vv

Pipeline with 2 protocol(s):
[1] demoCastN2C (cast)
[2] demoCastC2F (cast)

> pl[2] <- p2

3 sessionlnfo
> sessionInfo()

R version 3.1.0 (2014-04-10)
Platform: x86_64-apple-darwinl0.8.0 (64-bit)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils
[7] base

other attached packages:
[1] commandr_1.0.1

loaded via a namespace (and not attached):
[1] tools_3.1.0

datasets

methods

	Introduction
	Example pipelines
	sessionInfo

