
OpenMM Users Guide
Release 7.3

Peter Eastman

Nov 26, 2018

CONTENTS

1 Introduction 2
1.1 Online Resources . 2
1.2 Referencing OpenMM . 2
1.3 Acknowledgments . 2

2 The OpenMM Application Layer: Getting Started 3
2.1 Introduction . 3
2.2 Installing OpenMM . 3

3 Running Simulations 5
3.1 A First Example . 5
3.2 Using AMBER Files . 7
3.3 Using Gromacs Files . 9
3.4 Using CHARMM Files . 10
3.5 The OpenMM-Setup Application . 10
3.6 Simulation Parameters . 11

3.6.1 Platforms . 11
3.6.2 Force Fields . 12

3.6.2.1 Amber14 . 12
3.6.2.2 CHARMM36 . 13
3.6.2.3 AMOEBA . 14
3.6.2.4 CHARMM Polarizable Force Field . 14
3.6.2.5 Older Amber Force Fields . 14
3.6.2.6 Water Models . 15

3.6.3 AMBER Implicit Solvent . 15
3.6.4 Nonbonded Interactions . 15

3.6.4.1 Nonbonded Forces for AMOEBA . 16
3.6.5 Constraints . 17
3.6.6 Heavy Hydrogens . 18
3.6.7 Integrators . 18

3.6.7.1 Langevin Integrator . 18
3.6.7.2 Leapfrog Verlet Integrator . 18
3.6.7.3 Brownian Integrator . 19
3.6.7.4 Variable Time Step Langevin Integrator . 19
3.6.7.5 Variable Time Step Leapfrog Verlet Integrator . 19
3.6.7.6 Multiple Time Step Integrator . 19
3.6.7.7 aMD Integrator . 19
3.6.7.8 Compound Integrator . 20

3.6.8 Temperature Coupling . 20
3.6.9 Pressure Coupling . 20

i

3.6.10 Energy Minimization . 21
3.6.11 Removing Center of Mass Motion . 21
3.6.12 Writing Trajectories . 22
3.6.13 Recording Other Data . 22
3.6.14 Saving Simulation Progress and Results . 22

4 Model Building and Editing 24
4.1 Adding Hydrogens . 24
4.2 Adding Solvent . 25
4.3 Adding a Membrane . 26
4.4 Adding or Removing Extra Particles . 26
4.5 Removing Water . 26
4.6 Saving The Results . 26

5 Advanced Simulation Examples 28
5.1 Simulated Annealing . 28
5.2 Applying an External Force to Particles: a Spherical Container . 29
5.3 Extracting and Reporting Forces (and other data) . 29
5.4 Computing Energies . 31

6 Creating Force Fields 32
6.1 Basic Concepts . 32

6.1.1 Atom Types and Atom Classes . 32
6.1.2 Residue Templates . 32
6.1.3 Forces . 32

6.2 Writing the XML File . 33
6.2.1 <AtomTypes> . 33
6.2.2 <Residues> . 33
6.2.3 <Patches> . 34
6.2.4 Missing residue templates . 36
6.2.5 <HarmonicBondForce> . 37
6.2.6 <HarmonicAngleForce> . 37
6.2.7 <PeriodicTorsionForce> . 37
6.2.8 <RBTorsionForce> . 38
6.2.9 <CMAPTorsionForce> . 39
6.2.10 <NonbondedForce> . 39
6.2.11 <GBSAOBCForce> . 40
6.2.12 <CustomBondForce> . 40
6.2.13 <CustomAngleForce> . 40
6.2.14 <CustomTorsionForce> . 41
6.2.15 <CustomNonbondedForce> . 42
6.2.16 <CustomGBForce> . 42
6.2.17 <CustomHbondForce> . 43
6.2.18 <CustomManyParticleForce> . 44
6.2.19 Writing Custom Expressions . 45
6.2.20 Tabulated Functions . 45
6.2.21 Residue Template Parameters . 46
6.2.22 Including Other Files . 46

6.3 Using Multiple Files . 47
6.4 Extending ForceField . 47

6.4.1 Adding new force types . 47
6.4.2 Adding residue template generators . 48

7 The OpenMM Library: Introduction 50
7.1 What Is the OpenMM Library? . 50

ii

7.1.1 How to get started . 50
7.1.2 License . 50

7.2 Design Principles . 51
7.3 Choice of Language . 51
7.4 Architectural Overview . 52
7.5 The OpenMM Public API . 53
7.6 The OpenMM Low Level API . 54
7.7 Platforms . 54

8 Compiling OpenMM from Source Code 56
8.1 Prerequisites . 56

8.1.1 Get a C++ compiler . 56
8.1.1.1 Mac and Linux: clang or gcc . 56
8.1.1.2 Windows: Visual Studio . 56

8.1.2 Install CMake . 57
8.1.3 Get the OpenMM source code . 57
8.1.4 Other Required Software . 57

8.2 Step 1: Configure with CMake . 58
8.2.1 Build and source directories . 58
8.2.2 Starting CMake . 58

8.2.2.1 Mac and Linux . 58
8.2.2.2 Windows . 58
8.2.2.3 All platforms . 58

8.3 Step 2: Generate Build Files with CMake . 59
8.3.1 Windows . 59
8.3.2 Mac and Linux . 59

8.4 Step 3: Build OpenMM . 59
8.4.1 Windows . 59
8.4.2 Mac and Linux . 59

8.5 Step 4: Install OpenMM . 60
8.5.1 Windows . 60
8.5.2 Mac and Linux . 60

8.6 Step 5: Install the Python API . 60
8.6.1 Windows . 60
8.6.2 Mac and Linux . 60

8.7 Step 6: Test your build . 60
8.7.1 Windows . 60
8.7.2 Mac and Linux . 60

8.8 Building the Documentation (Optional) . 61
8.8.1 User Guide and Developer Guide . 61
8.8.2 Python and C++ API Documentation . 62

9 OpenMM Tutorials 63
9.1 Example Files Overview . 63
9.2 Running Example Files . 63

9.2.1 Visual Studio . 64
9.2.1.1 Determining the platform being used . 66
9.2.1.2 Visualizing the results . 66

9.2.2 Mac OS X/Linux . 66
9.2.2.1 Determining the platform being used . 67
9.2.2.2 Visualizing the results . 67
9.2.2.3 Compiling Fortran and C examples . 67

9.3 HelloArgon Program . 67
9.3.1 Including OpenMM-defined functions . 68

iii

9.3.2 Running a program on GPU platforms . 68
9.3.3 Running a simulation using the OpenMM public API . 68
9.3.4 Error handling for OpenMM . 70
9.3.5 Writing out PDB files . 70
9.3.6 HelloArgon output . 71

9.4 HelloSodiumChloride Program . 71
9.4.1 Simple molecular dynamics system . 71
9.4.2 Interface routines . 72

9.4.2.1 Units . 74
9.4.2.2 Lennard-Jones potential . 74
9.4.2.3 Opaque handle MyOpenMMData . 74
9.4.2.4 myInitializeOpenMM . 75
9.4.2.5 myGetOpenMMState . 77
9.4.2.6 myStepWithOpenMM . 77
9.4.2.7 myTerminateOpenMM . 78

9.5 HelloEthane Program . 78

10 Platform-Specific Properties 80
10.1 OpenCL Platform . 80
10.2 CUDA Platform . 81
10.3 CPU Platform . 81
10.4 Determinism . 82

11 Using OpenMM with Software Written in Languages Other than C++ 83
11.1 C API . 83

11.1.1 Mechanics of using the C API . 84
11.1.2 Mapping from the C++ API to the C API . 84
11.1.3 Exceptions . 85
11.1.4 OpenMM_Vec3 helper type . 86
11.1.5 Array helper types . 86

11.1.5.1 OpenMM_DoubleArray . 87
11.1.5.2 OpenMM_StringArray . 87
11.1.5.3 OpenMM_Vec3Array . 87
11.1.5.4 OpenMM_BondArray . 87
11.1.5.5 OpenMM_ParameterArray . 88

11.2 Fortran 95 API . 88
11.2.1 Mechanics of using the Fortran API . 88
11.2.2 Mapping from the C++ API to the Fortran API . 89
11.2.3 OpenMM_Vec3 helper type . 90
11.2.4 Array helper types . 90

11.2.4.1 OpenMM_DoubleArray . 91
11.2.4.2 OpenMM_StringArray . 92
11.2.4.3 OpenMM_Vec3Array . 92
11.2.4.4 OpenMM_BondArray . 93
11.2.4.5 OpenMM_ParameterArray . 93

11.3 Python API . 94
11.3.1 Installing the Python API . 94

11.3.1.1 Installing on Windows . 94
11.3.1.2 Installing on Linux and Mac . 94

11.3.2 Mapping from the C++ API to the Python API . 94
11.3.3 Mechanics of using the Python API . 95
11.3.4 Units and dimensional analysis . 95

11.3.4.1 Why does the Python API include units? . 95
11.3.4.2 Quantities, units, and dimensions . 96

iv

11.3.4.3 Units examples . 96
11.3.4.4 Arithmetic with units . 97
11.3.4.5 Atomic scale mass and energy units are “per amount” 98
11.3.4.6 SI prefixes . 98
11.3.4.7 Converting to different units . 98
11.3.4.8 Lists, tuples, vectors, numpy arrays, and Units . 98

12 Examples of OpenMM Integration 100
12.1 GROMACS . 100
12.2 TINKER-OpenMM . 100

13 Testing and Validation of OpenMM 102
13.1 Description of Tests . 102

13.1.1 Unit tests . 102
13.1.2 System tests . 103
13.1.3 Direct comparisons between OpenMM and other programs 103

13.2 Test Results . 103
13.2.1 Comparison to Reference Platform . 103
13.2.2 Energy Conservation . 104
13.2.3 Comparison to Gromacs . 105

14 AMOEBA Plugin 106
14.1 OpenMM AMOEBA Supported Forces and Options . 106

14.1.1 Supported Forces and Options . 106
14.1.2 Supported Integrators . 108

14.2 TINKER-OpenMM . 108
14.2.1 Building TINKER-OpenMM (Linux) . 108
14.2.2 Using TINKER-OpenMM . 109

14.2.2.1 Available outputs . 109
14.2.2.2 Setting the frequency of output data updates . 109
14.2.2.3 Specify the GPU board to use . 109
14.2.2.4 Running comparison tests between TINKER and OpenMM routines 109
14.2.2.5 Turning off OpenMM / Reverting to TINKER routines 111

14.3 OpenMM AMOEBA Validation . 111

15 Ring Polymer Molecular Dynamics (RPMD) Plugin 112

16 Drude Plugin 113

17 The Theory Behind OpenMM: Introduction 114
17.1 Overview . 114
17.2 Units . 114

18 Standard Forces 116
18.1 HarmonicBondForce . 116
18.2 HarmonicAngleForce . 116
18.3 PeriodicTorsionForce . 116
18.4 RBTorsionForce . 117
18.5 CMAPTorsionForce . 117
18.6 NonbondedForce . 117

18.6.1 Lennard-Jones Interaction . 117
18.6.2 Coulomb Interaction Without Cutoff . 118
18.6.3 Coulomb Interaction With Cutoff . 118
18.6.4 Coulomb Interaction With Ewald Summation . 119
18.6.5 Coulomb Interaction With Particle Mesh Ewald . 120

v

18.6.6 Lennard-Jones Interaction With Particle Mesh Ewald . 120
18.7 GBSAOBCForce . 121

18.7.1 Generalized Born Term . 121
18.7.2 Surface Area Term . 121

18.8 GayBerneForce . 121
18.9 AndersenThermostat . 122
18.10 MonteCarloBarostat . 123
18.11 MonteCarloAnisotropicBarostat . 123
18.12 MonteCarloMembraneBarostat . 123
18.13 CMMotionRemover . 124
18.14 RMSDForce . 124

19 Custom Forces 125
19.1 CustomBondForce . 125
19.2 CustomAngleForce . 125
19.3 CustomTorsionForce . 126
19.4 CustomNonbondedForce . 126
19.5 CustomExternalForce . 127
19.6 CustomCompoundBondForce . 127
19.7 CustomCentroidBondForce . 128
19.8 CustomManyParticleForce . 128
19.9 CustomGBForce . 128
19.10 CustomHbondForce . 129
19.11 CustomCVForce . 130
19.12 Writing Custom Expressions . 130
19.13 Setting Parameters . 131
19.14 Parameter Derivatives . 131

20 Integrators 132
20.1 VerletIntegrator . 132
20.2 LangevinIntegator . 132
20.3 BrownianIntegrator . 132
20.4 VariableVerletIntegrator . 133
20.5 VariableLangevinIntegrator . 133
20.6 CustomIntegrator . 134

21 Other Features 135
21.1 Periodic Boundary Conditions . 135
21.2 LocalEnergyMinimizer . 135
21.3 XMLSerializer . 136
21.4 Force Groups . 136
21.5 Virtual Sites . 136
21.6 Random Numbers with Stochastic Integrators and Forces . 137

Bibliography 139

vi

OpenMM Users Guide, Release 7.3

Portions copyright (c) 2008-2017 Stanford University and the Authors

Contributors: Kyle Beauchamp, Christopher Bruns, John Chodera, Peter Eastman, Mark Friedrichs, Joy P. Ku, Tom
Markland, Vijay Pande, Randy Radmer, Michael Sherman, Jason Swails, Lee-Ping Wang

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the “Document”), to
deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the Document is furnished
to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

CONTENTS 1

CHAPTER

ONE

INTRODUCTION

OpenMM consists of two parts:

1. A set of libraries that lets programmers easily add molecular simulation features to their programs

2. An “application layer” that exposes those features to end users who just want to run simulations

This guide is divided into three sections:

• Part I (Chapters 2-6) describes the application layer. It is relevant to all users, but especially relevant to people
who want to use OpenMM as a stand-alone application for running simulations.

• Part II (Chapters 7-16) describes how to use the OpenMM libraries within your own applications. It is primarily
relevant to programmers who want to write simulation applications.

• Part III (Chapters 17-21) describes the mathematical theory behind the features found in OpenMM. It is relevant
to all users.

1.1 Online Resources

You can find more documentation and other material at our website http://openmm.org. Among other things there is a
discussion forum, a wiki, and videos of lectures on using OpenMM.

1.2 Referencing OpenMM

Any work that uses OpenMM should cite the following publication:

P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M.
P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande. “OpenMM 7: Rapid development of high
performance algorithms for molecular dynamics.” PLOS Comp. Biol. 13(7): e1005659. (2017)

We depend on academic research grants to fund the OpenMM development efforts; citations of our publication will
help demonstrate the value of OpenMM.

1.3 Acknowledgments

OpenMM software and all related activities, such as this manual, are funded by the Simbios National Center
for Biomedical Computing through the National Institutes of Health Roadmap for Medical Research, Grant U54
GM072970, and by National Institutes of Health grant R01-GM062868.

2

http://openmm.org

CHAPTER

TWO

THE OPENMM APPLICATION LAYER: GETTING STARTED

2.1 Introduction

The first thing to understand about the OpenMM “application layer” is that it is not exactly an application in the
traditional sense: there is no program called “OpenMM” that you run. Rather, it is a collection of libraries written in
the Python programming language. Those libraries can easily be chained together to create Python programs that run
simulations. But don’t worry! You don’t need to know anything about Python programming (or programming at all)
to use it. Nearly all molecular simulation applications ask you to write some sort of “script” that specifies the details
of the simulation to run. With OpenMM, that script happens to be written in Python. But it is no harder to write than
those for most other applications, and this guide will teach you everything you need to know. There is even a graphical
interface that can write the script for you based on a simple set of options (see Section 3.5), so you never need to type
a single line of code!

On the other hand, if you don’t mind doing a little programming, this approach gives you enormous power and
flexibility. Your script has complete access to the entire OpenMM application programming interface (API), as well
as the full power of the Python language and libraries. You have complete control over every detail of the simulation,
from defining the molecular system to analyzing the results.

2.2 Installing OpenMM

OpenMM is installed using the Conda package manager (http://conda.pydata.org). Conda is included as part of the
Anaconda Python distribution, which you can download from http://docs.continuum.io/anaconda/install. This is a
Python distribution specifically designed for scientific applications, with many of the most popular mathematical
and scientific packages preinstalled. Alternatively you can use Miniconda (available from http://conda.pydata.org/
miniconda.html), which includes only Python itself, plus the Conda package manager. That offers a much smaller
initial download, with the ability to then install only the packages you want.

(A third option is to compile OpenMM from source. This provides more flexibility, but it is much more work, and
there is rarely a need for anyone but advanced users to compile from source. Detailed instruction are in Chapter 8.)

1. Begin by installing the most recent 64 bit, Python 3.x version of either Anaconda or Miniconda.

2. (Optional) If you want to run OpenMM on a GPU, install CUDA and/or OpenCL.

• If you have an Nvidia GPU, download CUDA from https://developer.nvidia.com/cuda-downloads. Be sure to
install both the drivers and toolkit. OpenCL is included with the CUDA drivers.

• If you have an AMD GPU and are using Linux or Windows, download the latest version of the Catalyst driver
from http://support.amd.com. On OS X, OpenCL is included with the operating system and is supported on OS
X 10.10.3 or later.

3. Open a command line terminal and type the following command

3

http://conda.pydata.org
http://docs.continuum.io/anaconda/install
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
https://developer.nvidia.com/cuda-downloads
http://support.amd.com

OpenMM Users Guide, Release 7.3

conda install -c omnia -c conda-forge openmm

This installs a version of OpenMM that is compiled to work with CUDA 9.2. Alternatively you can request a version
that is compiled for a specific CUDA version with the command

conda install -c omnia/label/cuda92 -c conda-forge openmm

where cuda92 should be replaced with the particular CUDA version installed on your computer. Supported values
are cuda75, cuda80, cuda90, cuda91, cuda92, and cuda100. Because different CUDA releases are not binary
compatible with each other, OpenMM can only work with the particular CUDA version it was compiled with.

4. Verify your installation by typing the following command:

python -m simtk.testInstallation

This command confirms that OpenMM is installed, checks whether GPU acceleration is available (via the OpenCL
and/or CUDA platforms), and verifies that all platforms produce consistent results.

4 Chapter 2. The OpenMM Application Layer: Getting Started

CHAPTER

THREE

RUNNING SIMULATIONS

3.1 A First Example

Let’s begin with our first example of an OpenMM script. It loads a PDB file called input.pdb that defines a
biomolecular system, parameterizes it using the Amber14 force field and TIP3P-FB water model, energy minimizes it,
simulates it for 10,000 steps with a Langevin integrator, and saves a snapshot frame to a PDB file called output.pdb
every 1000 time steps.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 3-1

You can find this script in the examples folder of your OpenMM installation. It is called simulatePdb.py. To
execute it from a command line, go to your terminal/console/command prompt window (see Section 2.2 on setting up
the window to use OpenMM). Navigate to the examples folder by typing

cd <examples_directory>

where the typical directory is /usr/local/openmm/examples on Linux and Mac machines and C:\Program
Files\OpenMM\examples on Windows machines.

Then type

python simulatePdb.py

You can name your own scripts whatever you want. Let’s go through the script line by line and see how it works.

5

OpenMM Users Guide, Release 7.3

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

These lines are just telling the Python interpreter about some libraries we will be using. Don’t worry about exactly
what they mean. Just include them at the start of your scripts.

pdb = PDBFile('input.pdb')

This line loads the PDB file from disk. (The input.pdb file in the examples directory contains the villin headpiece
in explicit solvent.) More precisely, it creates a PDBFile object, passes the file name input.pdb to it as an
argument, and assigns the object to a variable called pdb. The PDBFile object contains the information that was
read from the file: the molecular topology and atom positions. Your file need not be called input.pdb. Feel free to
change this line to specify any file you want, though it must contain all of the atoms needed by the force field. (More
information on how to add missing atoms and residues using OpenMM tools can be found in Chapter 4.) Make sure
you include the single quotes around the file name. OpenMM also can load files in the newer PDBx/mmCIF format:
just change PDBFile to PDBxFile.

forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')

This line specifies the force field to use for the simulation. Force fields are defined by XML files. OpenMM includes
XML files defining lots of standard force fields (see Section 3.6.2). If you find you need to extend the repertoire of force
fields available, you can find more information on how to create these XML files in Chapter 6. In this case we load
two of those files: amber14-all.xml, which contains the Amber14 force field, and amber14/tip3pfb.xml,
which contains the TIP3P-FB water model. The ForceField object is assigned to a variable called forcefield.

system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, constraints=HBonds)

This line combines the force field with the molecular topology loaded from the PDB file to create a complete
mathematical description of the system we want to simulate. (More precisely, we invoke the ForceField object’s
createSystem() function. It creates a System object, which we assign to the variable system.) It specifies
some additional options about how to do that: use particle mesh Ewald for the long range electrostatic interactions
(nonbondedMethod=PME), use a 1 nm cutoff for the direct space interactions (nonbondedCutoff=1*nanometer),
and constrain the length of all bonds that involve a hydrogen atom (constraints=HBonds). Note the way we
specified the cutoff distance 1 nm using 1*nanometer: This is an example of the powerful units tracking and
automatic conversion facility built into the OpenMM Python API that makes specifying unit-bearing quantities
convenient and less error-prone. We could have equivalently specified 10*angstrom instead of 1*nanometer and
achieved the same result. The units system will be described in more detail later, in Section 11.3.4.

integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

This line creates the integrator to use for advancing the equations of motion. It specifies a LangevinIntegrator,
which performs Langevin dynamics, and assigns it to a variable called integrator. It also specifies the values of
three parameters that are specific to Langevin dynamics: the simulation temperature (300 K), the friction coefficient
(1 ps-1), and the step size (0.002 ps).

simulation = Simulation(pdb.topology, system, integrator)

This line combines the molecular topology, system, and integrator to begin a new simulation. It creates a
Simulation object and assigns it to a variable called simulation. A Simulation object manages all the
processes involved in running a simulation, such as advancing time and writing output.

6 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

simulation.context.setPositions(pdb.positions)

This line specifies the initial atom positions for the simulation: in this case, the positions that were loaded from the
PDB file.

simulation.minimizeEnergy()

This line tells OpenMM to perform a local energy minimization. It is usually a good idea to do this at the start of a
simulation, since the coordinates in the PDB file might produce very large forces.

simulation.reporters.append(PDBReporter('output.pdb', 1000))

This line creates a “reporter” to generate output during the simulation, and adds it to the Simulation object’s list
of reporters. A PDBReporter writes structures to a PDB file. We specify that the output file should be called
output.pdb, and that a structure should be written every 1000 time steps.

simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,
potentialEnergy=True, temperature=True))

It can be useful to get regular status reports as a simulation runs so you can monitor its progress. This line adds another
reporter to print out some basic information every 1000 time steps: the current step index, the potential energy of the
system, and the temperature. We specify stdout (not in quotes) as the output file, which means to write the results
to the console. We also could have given a file name (in quotes), just as we did for the PDBReporter, to write the
information to a file.

simulation.step(10000)

Finally, we run the simulation, integrating the equations of motion for 10,000 time steps. Once it is finished, you can
load the PDB file into any program you want for analysis and visualization (VMD, PyMol, AmberTools, etc.).

3.2 Using AMBER Files

OpenMM can build a system in several different ways. One option, as shown above, is to start with a PDB file and
then select a force field with which to model it. Alternatively, you can use AmberTools to model your system. In
that case, you provide a prmtop file and an inpcrd file. OpenMM loads the files and creates a System from
them. This is illustrated in the following script. It can be found in OpenMM’s examples folder with the name
simulateAmber.py.

3.2. Using AMBER Files 7

http://www.ks.uiuc.edu/Research/vmd/
http://www.pymol.org
http://ambermd.org
http://ambermd.org

OpenMM Users Guide, Release 7.3

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')
system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,

constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)
if inpcrd.boxVectors is not None:

simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 3-2

This script is very similar to the previous one. There are just a few significant differences:

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')

In these lines, we load the prmtop file and inpcrd file. More precisely, we create AmberPrmtopFile and
AmberInpcrdFile objects and assign them to the variables prmtop and inpcrd, respectively. As before, you
can change these lines to specify any files you want. Be sure to include the single quotes around the file names.

Note: The AmberPrmtopFile reader provided by OpenMM only supports “new-style” prmtop files introduced
in AMBER 7. The AMBER distribution still contains a number of example files that are in the “old-style” prmtop
format. These “old-style” files will not run in OpenMM.

Next, the System object is created in a different way:

system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
constraints=HBonds)

In the previous section, we loaded the topology from a PDB file and then had the force field create a system based
on it. In this case, we don’t need a force field; the prmtop file already contains the force field parameters, so it can
create the system directly.

simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)

Notice that we now get the topology from the prmtop file and the atom positions from the inpcrd file. In the
previous section, both of these came from a PDB file, but AMBER puts the topology and positions in separate files.
We also add the following lines:

if inpcrd.boxVectors is not None:
simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors)

8 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

For periodic systems, the prmtop file specifies the periodic box vectors, just as a PDB file does. When we call
createSystem(), it sets those as the default periodic box vectors, to be used automatically for all simulations.
However, the inpcrd may also specify periodic box vectors, and if so we want to use those ones instead. For
example, if the system has been equilibrated with a barostat, the box vectors may have changed during equilibration.
We therefore check to see if the inpcrd file contained box vectors. If so, we call setPeriodicBoxVectors()
to tell it to use those ones, overriding the default ones provided by the System.

3.3 Using Gromacs Files

A third option for creating your system is to use the Gromacs setup tools. They produce a gro file containing
the coordinates and a top file containing the topology. OpenMM can load these exactly as it did the AMBER
files. This is shown in the following script. It can be found in OpenMM’s examples folder with the name
simulateGromacs.py.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

gro = GromacsGroFile('input.gro')
top = GromacsTopFile('input.top', periodicBoxVectors=gro.getPeriodicBoxVectors(),

includeDir='/usr/local/gromacs/share/gromacs/top')
system = top.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,

constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
simulation = Simulation(top.topology, system, integrator)
simulation.context.setPositions(gro.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 3-3

This script is nearly identical to the previous one, just replacing AmberInpcrdFile and AmberPrmtopFile
with GromacsGroFile and GromacsTopFile. Note that when we create the GromacsTopFile, we specify
values for two extra options. First, we specify periodicBoxVectors=gro.getPeriodicBoxVectors(). Unlike
OpenMM and AMBER, which can store periodic unit cell information with the topology, Gromacs only stores it with
the coordinates. To let GromacsTopFile create a Topology object, we therefore need to tell it the periodic box
vectors that were loaded from the gro file. You only need to do this if you are simulating a periodic system. For
implicit solvent simulations, it usually can be omitted.

Second, we specify includeDir=’/usr/local/gromacs/share/gromacs/top’. Unlike AMBER, which stores
all the force field parameters directly in a prmtop file, Gromacs just stores references to force field definition files
that are installed with the Gromacs application. OpenMM needs to know where to find these files, so the includeDir
parameter specifies the directory containing them. If you omit this parameter, OpenMM will assume the default
location /usr/local/gromacs/share/gromacs/top, which is often where they are installed on Unix-like
operating systems. So in Example 3-3 we actually could have omitted this parameter, but if the Gromacs files were
installed in any other location, we would need to include it.

3.3. Using Gromacs Files 9

OpenMM Users Guide, Release 7.3

3.4 Using CHARMM Files

Yet another option is to load files created by the CHARMM setup tools, or other compatible tools such as VMD. Those
include a psf file containing topology information, and an ordinary PDB file for the atomic coordinates. (Coordinates
can also be loaded from CHARMM coordinate or restart files using the CharmmCrdFile and CharmmRstFile
classes). In addition, you must provide a set of files containing the force field definition to use. This can involve several
different files with varying formats and filename extensions such as par, prm, top, rtf, inp, and str. To do this,
load all the definition files into a CharmmParameterSet object, then include that object as the first parameter when
you call createSystem() on the CharmmPsfFile.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout, exit, stderr

psf = CharmmPsfFile('input.psf')
pdb = PDBFile('input.pdb')
params = CharmmParameterSet('charmm22.rtf', 'charmm22.prm')
system = psf.createSystem(params, nonbondedMethod=NoCutoff,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
simulation = Simulation(psf.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.reporters.append(StateDataReporter(stdout, 1000, step=True,

potentialEnergy=True, temperature=True))
simulation.step(10000)

Example 3-4

Note that both the CHARMM and XPLOR versions of the psf file format are supported.

3.5 The OpenMM-Setup Application

One way to create your own scripts is to start with one of the examples given above and customize it to suit your needs,
but there’s an even easier option. OpenMM-Setup is a graphical application that walks you through the whole process
of loading your input files and setting options. It then generates a complete script, and can even run it for you.

To install OpenMM-Setup, open a command line terminal and type the following command

conda install -c omnia openmm-setup

You can then launch it by typing the command

openmm-setup

It will automatically open a window in your web browser displaying the user interface.

OpenMM-Setup is far more than just a script generator. It can fix problems in your input files, add missing atoms,
build membranes and water boxes, and much more. It is a very easy way to quickly do all necessary preparation and
setup. We highly recommend it to all users of OpenMM, from novices to experts.

10 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

Figure 3-1: The OpenMM-Setup application

3.6 Simulation Parameters

Now let’s consider lots of ways you might want to customize your script.

3.6.1 Platforms

When creating a Simulation, you can optionally tell it what Platform to use. OpenMM includes four platforms:
Reference, CPU, CUDA, and OpenCL. For a description of the differences between them, see Section 7.7. There
are three ways in which the Platform can be chosen:

1. By default, OpenMM will try to select the fastest available Platform. Usually its choice will be reasonable, but
sometimes you may want to change it.

2. Alternatively, you can set the OPENMM_DEFAULT_PLATFORM environment variable to the name of the
Platform to use. This overrides the default logic.

3. Finally, you can explicitly specify a Platform object in your script when you create the Simulation. The
following lines specify to use the CUDA platform:

platform = Platform.getPlatformByName('CUDA')
simulation = Simulation(prmtop.topology, system, integrator, platform)

The platform name should be one of OpenCL, CUDA, CPU, or Reference.

You also can specify platform-specific properties that customize how calculations should be done. See Chapter 10
for details of the properties that each Platform supports. For example, the following lines specify to parallelize work
across two different GPUs (CUDA devices 0 and 1), doing all computations in double precision:

3.6. Simulation Parameters 11

OpenMM Users Guide, Release 7.3

platform = Platform.getPlatformByName('CUDA')
properties = {'DeviceIndex': '0,1', 'Precision': 'double'}
simulation = Simulation(prmtop.topology, system, integrator, platform, properties)

3.6.2 Force Fields

When you create a force field, you specify one or more XML files from which to load the force field definition. Most
often, there will be one file to define the main force field, and possibly a second file to define the water model (either
implicit or explicit). For example:

forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')

In some cases, one XML file may load several others. For example, amber14-all.xml is really just a shortcut for
loading several different files that together make up the AMBER14 force field. If you need finer grained control over
which parameters are loaded, you can instead specify the component files individually.

Be aware that some force fields and water models include “extra particles”, such as lone pairs or Drude particles.
Examples include the CHARMM polarizable force field and all of the 4 and 5 site water models. To use these force
fields, you must first add the extra particles to the Topology. See section 4.4 for details.

The force fields described below are the ones that are bundled with OpenMM. Additional force fields are available
online at https://github.com/choderalab/openmm-forcefields.

3.6.2.1 Amber14

The Amber14[1] force field is made up of various files that define parameters for proteins, DNA, RNA, lipids, water,
and ions.

File Parameters
amber14/protein.ff14SB.xml Protein (recommended)
amber14/protein.ff15ipq.xml Protein (alternative)
amber14/DNA.OL15.xml DNA (recommended)
amber14/DNA.bsc1.xml DNA (alternative)
amber14/RNA.OL3.xml RNA
amber14/lipid17.xml Lipid
amber14/tip3p.xml TIP3P water model[2] and ions
amber14/tip3pfb.xml TIP3P-FB water model[3] and ions
amber14/tip4pew.xml TIP4P-Ew water model[4] and ions
amber14/tip4pfb.xml TIP4P-FB water model[3] and ions
amber14/spce.xml SPC/E water model[5] and ions

As a convenience, the file amber14-all.xml can be used as a shortcut to include
amber14/protein.ff14SB.xml, amber14/DNA.OL15.xml, amber14/RNA.OL3.xml, and
amber14/lipid17.xml. In most cases, you can simply include that file, plus one of the water models,
such as amber14/tip3pfb.xml for the TIP3P-FB water model and ions[3]:

forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')

Tip: The solvent model XML files included under the amber14/ directory include both water and ions compatible
with that water model, so if you mistakenly specify tip3p.xml instead of amber14/tip3p.xml, you run the risk
of having ForceField throw an exception since tip3p.xml will be missing parameters for ions in your system.

12 Chapter 3. Running Simulations

https://github.com/choderalab/openmm-forcefields

OpenMM Users Guide, Release 7.3

The converted parameter sets come from the AmberTools 17 release and were converted using the openmm-forcefields
package and ParmEd.

3.6.2.2 CHARMM36

The CHARMM36[6] force field provides parameters for proteins, DNA, RNA, lipids, carbohydrates, water, ions, and
various small molecules (see here for full references).

File Parameters
charmm36.xml Protein, DNA, RNA, lipids, carbohydrates, and small molecules
charmm36/water.xml Default CHARMM water model (a modified version of TIP3P[2]) and ions
charmm36/spce.xml SPC/E water model[5] and ions
charmm36/tip3p-pme-b.xml TIP3P-PME-B water model[7] and ions
charmm36/tip3p-pme-f.xml TIP3P-PME-F water model[7] and ions
charmm36/tip4pew.xml TIP4P-Ew water model[4] and ions
charmm36/tip4p2005.xml TIP4P-2005 water model[8] and ions
charmm36/tip5p.xml TIP5P water model[9] and ions
charmm36/tip5pew.xml TIP5P-Ew water model[10] and ions

The file charmm36.xml bundles everything but the water and ions into a single file. In most cases, you can
simply include that file, plus one of the water models, such as charmm36/water.xml, which specifies the default
CHARMM water model (a modified version of TIP3P[2]) and ions:

forcefield = ForceField('charmm36.xml', 'charmm36/water.xml')

Warning: Drude polarizable sites and lone pairs are not yet supported by ParmEd and the CHARMM36
forcefields that depend on these features are not included in this port. To use the CHARMM 2013 polarizable
force field[11], include the single file charmm_polar_2013.xml.

Tip: The solvent model XML files included under the charmm36/ directory include both water and ions compatible
with that water model, so if you mistakenly specify tip3p.xml instead of charmm36/water.xml, you run the
risk of having ForceField raise an exception due to missing parameters for ions in your system.

Tip: CHARMM makes extensive use of patches, which are automatically combined with residue templates to create
an expanded library of patched residue templates by ForceField. That means that patched residues, such as ACE
and NME patched termini, must occur as a single residue in order for ForceField to correctly match the residue
template and apply parameters. Since these patched residues are not standard PDB residues, Modeller does not
know how to add hydrogens to these nonstandard residues, and your input topologies must already contain appropriate
hydrogens. This can often cause problems when trying to read in PDB files from sources such as CHARMM-GUI that
do not generate PDB files that comply with the PDB standard. If you’re using files from CHARMM-GUI, it’s easiest
to load the PSF file directly, as discussed in Section 3.4.

Tip: Trying to read in PDB files from sources such as CHARMM-GUI that do not generate PDB files that comply
with the PDB standard and omit CONECT records specifying bonds between residues (such as cysteines) or include
CONECT records specifying non-chemical H-H bonds in waters can cause issues with the detection and parameter
assignment for disulfide bonds. Make sure the files you read in comply with the appropriate standards regarding
additional bonds and nonstandard residue definitions. If you’re using files from CHARMM-GUI, it’s easiest to load

3.6. Simulation Parameters 13

http://ambermd.org/AmberTools17-get.html
https://github.com/choderalab/openmm-forcefields
https://github.com/parmed/parmed
http://mackerell.umaryland.edu/charmm_ff.shtml#refs
https://github.com/parmed/parmed
http://charmm-gui.org/
http://www.wwpdb.org/documentation/file-format
http://charmm-gui.org/
http://charmm-gui.org/
http://www.wwpdb.org/documentation/file-format
http://charmm-gui.org/

OpenMM Users Guide, Release 7.3

the PSF file directly, as discussed in Section 3.4.

The converted parameter sets come from the CHARMM36 July 2017 update and were converted using the
openmm-forcefields package and parmed.

3.6.2.3 AMOEBA

The AMOEBA polarizable force field provides parameters for proteins, water, and ions.

File Parameters
amoeba2013.xml AMOEBA 2013[12]
amoeba2013_gk.xml Generalized Kirkwood solvation model[13] for use with AMOEBA 2013 force field
amoeba2009.xml AMOEBA 2009[14]. This force field is deprecated. It is recommended to use

AMOEBA 2013 instead.
amoeba2009_gk.xml Generalized Kirkwood solvation model for use with AMOEBA 2009 force field

For explicit solvent simulations, just include the single file amoeba2013.xml. AMOEBA also supports implicit
solvent using a Generalized Kirkwood model. To enable it, also include amoeba2013_gk.xml.

The older AMOEBA 2009 force field is provided only for backward compatibility, and is not recommended for most
simulations.

3.6.2.4 CHARMM Polarizable Force Field

To use the CHARMM 2013 polarizable force field[11], include the single file charmm_polar_2013.xml. It
includes parameters for proteins, water, and ions. When using this force field, remember to add extra particles to the
Topology as described in section 4.4.

3.6.2.5 Older Amber Force Fields

OpenMM includes several older Amber force fields as well. For most simulations Amber14 is preferred over any of
these, but they are still useful for reproducing older results.

File Force Field
amber96.xml Amber96[15]
amber99sb.xml Amber99[16] with modified backbone torsions[17]
amber99sbildn.xml Amber99SB plus improved side chain torsions[18]
amber99sbnmr.xml Amber99SB with modifications to fit NMR data[19]
amber03.xml Amber03[20]
amber10.xml Amber10 (documented in the AmberTools manual as ff10)

Several of these force fields support implicit solvent. To enable it, also include the corresponding OBC file.

File Implicit Solvation Model
amber96_obc.xml GBSA-OBC solvation model[21] for use with Amber96 force field
amber99_obc.xml GBSA-OBC solvation model for use with Amber99 force field and its variants
amber03_obc.xml GBSA-OBC solvation model for use with Amber03 force field
amber10_obc.xml GBSA-OBC solvation model for use with Amber10 force field

Note that the GBSA-OBC parameters in these files are those used in TINKER.[22] They are designed for use with
Amber force fields, but they are different from the parameters found in the AMBER application.

14 Chapter 3. Running Simulations

http://mackerell.umaryland.edu/charmm_ff.shtml
https://github.com/choderalab/openmm-forcefields
https://github.com/parmed/parmed
http://ambermd.org

OpenMM Users Guide, Release 7.3

3.6.2.6 Water Models

The following files define popular water models. They can be used with force fields that do not provide their own
water models. When using Amber14 or CHARMM36, use the water files included with those force fields instead,
since they also include ion parameters.

File Water Model
tip3p.xml TIP3P water model[2]
tip3pfb.xml TIP3P-FB water model[3]
tip4pew.xml TIP4P-Ew water model[4]
tip4pfb.xml TIP4P-FB water model[3]
tip5p.xml TIP5P water model[9]
spce.xml SPC/E water model[5]
swm4ndp.xml SWM4-NDP water model[23]

3.6.3 AMBER Implicit Solvent

When creating a system from a prmtop file you do not specify force field files, so you need a different way to tell it to
use implicit solvent. This is done with the implicitSolvent parameter:

system = prmtop.createSystem(implicitSolvent=OBC2)

OpenMM supports all of the Generalized Born models used by AMBER. Here are the allowed values for
implicitSolvent:

Value Meaning
None No implicit solvent is used.
HCT Hawkins-Cramer-Truhlar GBSA model[24] (corresponds to igb=1 in AMBER)
OBC1 Onufriev-Bashford-Case GBSA model[21] using the GBOBCI parameters (corresponds to igb=2 in

AMBER).
OBC2 Onufriev-Bashford-Case GBSA model[21] using the GBOBCII parameters (corresponds to igb=5 in

AMBER). This is the same model used by the GBSA-OBC files described in Section 3.6.2.
GBn GBn solvation model[25] (corresponds to igb=7 in AMBER).
GBn2 GBn2 solvation model[26] (corresponds to igb=8 in AMBER).

You can further control the solvation model in a few ways. First, you can specify the dielectric constants to use for the
solute and solvent:

system = prmtop.createSystem(implicitSolvent=OBC2, soluteDielectric=1.0,
solventDielectric=80.0)

If they are not specified, the solute and solvent dielectrics default to 1.0 and 78.5, respectively. These values were
chosen for consistency with AMBER, and are slightly different from those used elsewhere in OpenMM: when building
a system from a force field, the solvent dielectric defaults to 78.3.

You also can model the effect of a non-zero salt concentration by specifying the Debye-Huckel screening
parameter[27]:

system = prmtop.createSystem(implicitSolvent=OBC2, implicitSolventKappa=1.0/nanometer)

3.6.4 Nonbonded Interactions

When creating the system (either from a force field or a prmtop file), you can specify options about how nonbonded
interactions should be treated:

3.6. Simulation Parameters 15

OpenMM Users Guide, Release 7.3

system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer)

The nonbondedMethod parameter can have any of the following values:

Value Meaning
NoCutoff No cutoff is applied.
CutoffNonPeriodic The reaction field method is used to eliminate all interactions beyond a cutoff distance.

Not valid for AMOEBA.
CutoffPeriodic The reaction field method is used to eliminate all interactions beyond a cutoff distance.

Periodic boundary conditions are applied, so each atom interacts only with the nearest
periodic copy of every other atom. Not valid for AMOEBA.

Ewald Periodic boundary conditions are applied. Ewald summation is used to compute long
range Coulomb interactions. (This option is rarely used, since PME is much faster for
all but the smallest systems.) Not valid for AMOEBA.

PME Periodic boundary conditions are applied. The Particle Mesh Ewald method is used to
compute long range Coulomb interactions.

LJPME Periodic boundary conditions are applied. The Particle Mesh Ewald method is used to
compute long range interactions for both Coulomb and Lennard-Jones.

When using any method other than NoCutoff, you should also specify a cutoff distance. Be sure to
specify units, as shown in the examples above. For example, nonbondedCutoff=1.5*nanometers or
nonbondedCutoff=12*angstroms are legal values.

When using Ewald, PME, or LJPME, you can optionally specify an error tolerance for the force computation. For
example:

system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
ewaldErrorTolerance=0.00001)

The error tolerance is roughly equal to the fractional error in the forces due to truncating the Ewald summation. If you
do not specify it, a default value of 0.0005 is used.

Another optional parameter when using a cutoff is switchDistance. This causes Lennard-Jones interactions to
smoothly go to zero over some finite range, rather than being sharply truncated at the cutoff distance. This can
improve energy conservation. To use it, specify a distance at which the interactions should start being reduced. For
example:

system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
switchDistance=0.9*nanometer)

3.6.4.1 Nonbonded Forces for AMOEBA

For the AMOEBA force field, the valid values for the nonbondedMethod are NoCutoff and PME. The other
nonbonded methods, CutoffNonPeriodic, CutoffPeriodic, and Ewald are unavailable for this force field.

For implicit solvent runs using AMOEBA, only the nonbondedMethod option NoCutoff is available.

Lennard-Jones Interaction Cutoff Value

In addition, for the AMOEBA force field a cutoff for the Lennard-Jones interaction independent of the value used for
the electrostatic interactions may be specified using the keyword vdwCutoff.

system = forcefield.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
ewaldErrorTolerance=0.00001, vdwCutoff=1.2*nanometer)

16 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

If vdwCutoff is not specified, then the value of nonbondedCutoff is used for the Lennard-Jones interactions.

Specifying the Polarization Method

When using the AMOEBA force field, OpenMM allows the induced dipoles to be calculated in any of three different
ways. The slowest but potentially most accurate method is to iterate the calculation until the dipoles converge to a
specified tolerance. To select this, specify polarization=’mutual’. Use the mutualInducedTargetEpsilon

option to select the tolerance; for most situations, a value of 0.00001 works well. Alternatively you can specify
polarization=’extrapolated’. This uses an analytic approximation [28] to estimate what the fully converged
dipoles will be without actually continuing the calculation to convergence. In many cases this can be significantly faster
with only a small loss in accuracy. Finally, you can specify polarization=’direct’ to use the direct polarization
approximation, in which induced dipoles depend only on the fixed multipoles, not on other induced dipoles. This is
even faster, but it produces very different forces from mutual polarization, so it should only be used with force fields
that have been specifically parameterized for use with this approximation.

Here are examples of using each method:

system = forcefield.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
vdwCutoff=1.2*nanometer, polarization='mutual', mutualInducedTargetEpsilon=0.

↪→00001)

system = forcefield.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
vdwCutoff=1.2*nanometer, polarization='extrapolated')

system = forcefield.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,
vdwCutoff=1.2*nanometer, polarization='direct')

Implicit Solvent and Solute Dielectrics

For implicit solvent simulations using the AMOEBA force field, the amoeba2013_gk.xml file should be included
in the initialization of the force field:

forcefield = ForceField('amoeba2009.xml', 'amoeba2009_gk.xml')

Only the nonbondedMethod option NoCutoff is available for implicit solvent runs using AMOEBA. In addition, the
solvent and solute dielectric values can be specified for implicit solvent simulations:

system=forcefield.createSystem(nonbondedMethod=NoCutoff, soluteDielectric=2.0,
solventDielectric=80.0)

The default values are 1.0 for the solute dielectric and 78.3 for the solvent dielectric.

3.6.5 Constraints

When creating the system (either from a force field or an AMBER prmtop file), you can optionally tell OpenMM to
constrain certain bond lengths and angles. For example,

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds)

The constraints parameter can have any of the following values:

3.6. Simulation Parameters 17

OpenMM Users Guide, Release 7.3

Value Meaning
None No constraints are applied. This is the default value.
HBonds The lengths of all bonds that involve a hydrogen atom are constrained.
AllBonds The lengths of all bonds are constrained.
HAngles The lengths of all bonds are constrained. In addition, all angles of the form H-X-H or H-O-X (where

X is an arbitrary atom) are constrained.

The main reason to use constraints is that it allows one to use a larger integration time step. With no constraints, one
is typically limited to a time step of about 1 fs for typical biomolecular force fields like AMBER or CHARMM. With
HBonds constraints, this can be increased to about 2 fs. With HAngles, it can be further increased to 3.5 or 4 fs.

Regardless of the value of this parameter, OpenMM makes water molecules completely rigid, constraining both their
bond lengths and angles. You can disable this behavior with the rigidWater parameter:

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=None,
↪→rigidWater=False)

Be aware that flexible water may require you to further reduce the integration step size, typically to about 0.5 fs.

Note: The AMOEBA forcefield is intended to be used without constraints.

3.6.6 Heavy Hydrogens

When creating the system (either from a force field or an AMBER prmtop file), you can optionally tell OpenMM to
increase the mass of hydrogen atoms. For example,

system = prmtop.createSystem(hydrogenMass=4*amu)

This applies only to hydrogens that are bonded to heavy atoms, and any mass added to the hydrogen is subtracted
from the heavy atom. This keeps their total mass constant while slowing down the fast motions of hydrogens. When
combined with constraints (typically constraints=AllBonds), this allows a further increase in integration step size.

3.6.7 Integrators

OpenMM offers a choice of several different integration methods. You select which one to use by creating an integrator
object of the appropriate type.

3.6.7.1 Langevin Integrator

In the examples of the previous sections, we used Langevin integration:

integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

The three parameter values in this line are the simulation temperature (300 K), the friction coefficient (1 ps-1), and the
step size (0.002 ps). You are free to change these to whatever values you want. Be sure to specify units on all values.
For example, the step size could be written either as 0.002*picoseconds or 2*femtoseconds. They are exactly
equivalent.

3.6.7.2 Leapfrog Verlet Integrator

A leapfrog Verlet integrator can be used for running constant energy dynamics. The command for this is:

18 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

integrator = VerletIntegrator(0.002*picoseconds)

The only option is the step size.

3.6.7.3 Brownian Integrator

Brownian (diffusive) dynamics can be used by specifying the following:

integrator = BrownianIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

The parameters are the same as for Langevin dynamics: temperature (300 K), friction coefficient (1 ps-1), and step size
(0.002 ps).

3.6.7.4 Variable Time Step Langevin Integrator

A variable time step Langevin integrator continuously adjusts its step size to keep the integration error below a specified
tolerance. In some cases, this can allow you to use a larger average step size than would be possible with a fixed step
size integrator. It also is very useful in cases where you do not know in advance what step size will be stable, such as
when first equilibrating a system. You create this integrator with the following command:

integrator = VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)

In place of a step size, you specify an integration error tolerance (0.001 in this example). It is best not to think of
this value as having any absolute meaning. Just think of it as an adjustable parameter that affects the step size and
integration accuracy. Smaller values will produce a smaller average step size. You should try different values to find
the largest one that produces a trajectory sufficiently accurate for your purposes.

3.6.7.5 Variable Time Step Leapfrog Verlet Integrator

A variable time step leapfrog Verlet integrator works similarly to the variable time step Langevin integrator in that
it continuously adjusts its step size to keep the integration error below a specified tolerance. The command for this
integrator is:

integrator = VariableVerletIntegrator(0.001)

The parameter is the integration error tolerance (0.001), whose meaning is the same as for the Langevin integrator.

3.6.7.6 Multiple Time Step Integrator

The MTSIntegrator class implements the rRESPA multiple time step algorithm[29]. This allows some forces in
the system to be evaluated more frequently than others. For details on how to use it, consult the API documentation.

3.6.7.7 aMD Integrator

There are three different integrator types that implement variations of the aMD[30] accelerated sampling algorithm:
AMDIntegrator, AMDForceGroupIntegrator, and DualAMDIntegrator. They perform integration on a
modified potential energy surface to allow much faster sampling of conformations. For details on how to use them,
consult the API documentation.

3.6. Simulation Parameters 19

OpenMM Users Guide, Release 7.3

3.6.7.8 Compound Integrator

The CompoundIntegrator class is useful for cases where you want to use multiple integration algorithms within
a single simulation. It allows you to create multiple integrators, then switch back and forth between them. For details
on how to use it, consult the API documentation.

3.6.8 Temperature Coupling

If you want to run a simulation at constant temperature, using a Langevin integrator (as shown in the examples above)
is usually the best way to do it. OpenMM does provide an alternative, however: you can use a Verlet integrator, then
add an Andersen thermostat to your system to provide temperature coupling.

To do this, we can add an AndersenThermostat object to the System as shown below.

...
system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,

constraints=HBonds)
system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))
integrator = VerletIntegrator(0.002*picoseconds)
...

The two parameters of the Andersen thermostat are the temperature (300 K) and collision frequency (1 ps-1).

3.6.9 Pressure Coupling

All the examples so far have been constant volume simulations. If you want to run at constant pressure instead, add
a Monte Carlo barostat to your system. You do this exactly the same way you added the Andersen thermostat in the
previous section:

...
system = prmtop.createSystem(nonbondedMethod=PME, nonbondedCutoff=1*nanometer,

constraints=HBonds)
system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
...

The parameters of the Monte Carlo barostat are the pressure (1 bar) and temperature (300 K). The barostat assumes
the simulation is being run at constant temperature, but it does not itself do anything to regulate the temperature.

Warning: It is therefore critical that you always use it along with a Langevin integrator or Andersen thermostat,
and that you specify the same temperature for both the barostat and the integrator or thermostat. Otherwise, you
will get incorrect results.

There also is an anisotropic barostat that scales each axis of the periodic box independently, allowing it to change
shape. When using the anisotropic barostat, you can specify a different pressure for each axis. The following line
applies a pressure of 1 bar along the X and Y axes, but a pressure of 2 bar along the Z axis:

system.addForce(MonteCarloAnisotropicBarostat((1, 1, 2)*bar, 300*kelvin))

Another feature of the anisotropic barostat is that it can be applied to only certain axes of the periodic box, keeping
the size of the other axes fixed. This is done by passing three additional parameters that specify whether the barostat
should be applied to each axis. The following line specifies that the X and Z axes of the periodic box should not be
scaled, so only the Y axis can change size.

20 Chapter 3. Running Simulations

OpenMM Users Guide, Release 7.3

system.addForce(MonteCarloAnisotropicBarostat((1, 1, 1)*bar, 300*kelvin,
False, True, False))

There is a third barostat designed specifically for simulations of membranes. It assumes the membrane lies in the XY
plane, and treats the X and Y axes of the box differently from the Z axis. It also applies a uniform surface tension in
the plane of the membrane. The following line adds a membrane barostat that applies a pressure of 1 bar and a surface
tension of 200 bar*nm. It specifies that the X and Y axes are treated isotropically while the Z axis is free to change
independently.

system.addForce(MonteCarloMembraneBarostat(1*bar, 200*bar*nanometer,
MonteCarloMembraneBarostat.XYIsotropic, MonteCarloMembraneBarostat.ZFree,

↪→300*kelvin))

See the API documentation for details about the allowed parameter values and their meanings.

3.6.10 Energy Minimization

As seen in the examples, performing a local energy minimization takes a single line in the script:

simulation.minimizeEnergy()

In most cases, that is all you need. There are two optional parameters you can specify if you want further control over
the minimization. First, you can specify a tolerance for when the energy should be considered to have converged:

simulation.minimizeEnergy(tolerance=5*kilojoule/mole)

If you do not specify this parameter, a default tolerance of 10 kJ/mole is used.

Second, you can specify a maximum number of iterations:

simulation.minimizeEnergy(maxIterations=100)

The minimizer will exit once the specified number of iterations is reached, even if the energy has not yet converged.
If you do not specify this parameter, the minimizer will continue until convergence is reached, no matter how many
iterations it takes.

These options are independent. You can specify both if you want:

simulation.minimizeEnergy(tolerance=0.1*kilojoule/mole, maxIterations=500)

3.6.11 Removing Center of Mass Motion

By default, System objects created with the OpenMM application tools add a CMMotionRemover that removes all
center of mass motion at every time step so the system as a whole does not drift with time. This is almost always what
you want. In rare situations, you may want to allow the system to drift with time. You can do this by specifying the
removeCMMotion parameter when you create the System:

system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff,
removeCMMotion=False)

3.6. Simulation Parameters 21

OpenMM Users Guide, Release 7.3

3.6.12 Writing Trajectories

OpenMM can save simulation trajectories to disk in three formats: PDB, PDBx/mmCIF, and DCD. All of these are
widely supported formats, so you should be able to read them into most analysis and visualization programs.

To save a trajectory, just add a “reporter” to the simulation, as shown in the example scripts above:

simulation.reporters.append(PDBReporter('output.pdb', 1000))

The two parameters of the PDBReporter are the output filename and how often (in number of time steps)
output structures should be written. To use PDBx/mmCIF or DCD format, just replace PDBReporter with
PDBxReporter or DCDReporter. The parameters represent the same values:

simulation.reporters.append(DCDReporter('output.dcd', 1000))

3.6.13 Recording Other Data

In addition to saving a trajectory, you may want to record other information over the course of a simulation, such as the
potential energy or temperature. OpenMM provides a reporter for this purpose also. Create a StateDataReporter
and add it to the simulation:

simulation.reporters.append(StateDataReporter('data.csv', 1000, time=True,
kineticEnergy=True, potentialEnergy=True))

The first two parameters are the output filename and how often (in number of time steps) values should be written. The
remaining arguments specify what values should be written at each report. The available options are step (the index
of the current time step), time, progress (what percentage of the simulation has completed), remainingTime (an
estimate of how long it will take the simulation to complete), potentialEnergy, kineticEnergy, totalEnergy,
temperature, volume (the volume of the periodic box), density (the total system mass divided by the volume of the
periodic box), and speed (an estimate of how quickly the simulation is running). If you include either the progress
or remainingTime option, you must also include the totalSteps parameter to specify the total number of time
steps that will be included in the simulation. One line is written to the file for each report containing the requested
values. By default the values are written in comma-separated-value (CSV) format. You can use the separator

parameter to choose a different separator. For example, the following line will cause values to be separated by spaces
instead of commas:

simulation.reporters.append(StateDataReporter('data.txt', 1000, progress=True,
temperature=True, totalSteps=10000, separator=' '))

3.6.14 Saving Simulation Progress and Results

There are three built-in ways to save the results of your simulation in OpenMM (additional methods can be written
yourself or imported through other packages like mdtraj or parmed). If you are simply interested in saving the structure,
you can write it out as a PDB file using PDBFile.writeFile(). You can see an example of this in the modeller
section 4.6.

If you are hoping to save more information than just positions, you can use simulation.saveState(). This will
save the entire state of the simulation, including positions, velocities, box dimensions and much more in an XML file.
This same file can be loaded back into OpenMM and used to continue the simulation. Importantly, because this file is
a text file, it can be transfered between different platforms and different versions of OpenMM. A potential downside
to this approach is that state files are often quite large, and may not fit all use cases. Here’s an example of how to use
it:

22 Chapter 3. Running Simulations

http://www.wwpdb.org/documentation/format33/v3.3.html
http://mmcif.wwpdb.org
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/dcdplugin.html

OpenMM Users Guide, Release 7.3

simulation.saveState('output.xml')

To load the simulation back in:

simulation.loadState('output.xml')

There is a third way to save your simulation, known as a checkpoint file, which will save the entire simulation as
a binary file. It will allow you to exactly continue a simulation if the need arises (though whether the simulation is
deterministic depends on platform and methods, see 10.4). There are important caveats to this approach, however. This
binary can only be used to restart simulations on machines with the same hardware and the same OpenMM version as
the one that saved it. Therefore, it should only be used when it’s clear that won’t be an issue.

simulation.saveCheckpoint('state.chk')

And can be loaded back in like this:

simulation.loadCheckpoint('state.chk')

Finally, OpenMM comes with a built-in reporter for saving checkpoints, the CheckpointReporter, which can
be helpful in restarting simulations that failed unexpectedly or due to outside reasons (e.g. server crash). To save a
checkpoint file every 5,000 steps, for example:

simulation.reporters.append(CheckpointReporter('checkpnt.chk', 5000))

Note that the checkpoint reporter will overwrite the last checkpoint file.

3.6. Simulation Parameters 23

CHAPTER

FOUR

MODEL BUILDING AND EDITING

Sometimes you have a PDB file that needs some work before you can simulate it. Maybe it doesn’t contain hydrogen
atoms (which is common for structures determined by X-ray crystallography), so you need to add them. Or perhaps
you want to simulate the system in explicit water, but the PDB file doesn’t contain water molecules. Or maybe it does
contain water molecules, but they contain the wrong number of interaction sites for the water model you want to use.
OpenMM’s Modeller class can fix problems such as these.

To use it, create a Modeller object, providing the initial Topology and atom positions. You then can invoke
various modelling functions on it. Each one modifies the system in some way, creating a new Topology and list of
positions. When you are all done, you can retrieve them from the Modeller and use them as the starting point for
your simulation:

...
pdb = PDBFile('input.pdb')
modeller = Modeller(pdb.topology, pdb.positions)
... Call some modelling functions here ...
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)

Example 4-1

Now let’s consider the particular functions you can call.

4.1 Adding Hydrogens

Call the addHydrogens() function to add missing hydrogen atoms:

modeller.addHydrogens(forcefield)

The force field is needed to determine the positions for the hydrogen atoms. If the system already contains some
hydrogens but is missing others, that is fine. The Modeller will recognize the existing ones and figure out which ones
need to be added.

Some residues can exist in different protonation states depending on the pH and on details of the local environment.
By default it assumes pH 7, but you can specify a different value:

modeller.addHydrogens(forcefield, pH=5.0)

For each residue, it selects the protonation state that is most common at the specified pH. In the case of Cysteine
residues, it also checks whether the residue participates in a disulfide bond when selecting the state to use. Histidine

24

OpenMM Users Guide, Release 7.3

has two different protonation states that are equally likely at neutral pH. It therefore selects which one to use based on
which will form a better hydrogen bond.

If you want more control, it is possible to specify exactly which protonation state to use for particular residues. For
details, consult the API documentation for the Modeller class.

4.2 Adding Solvent

Call addSolvent() to create a box of solvent (water and ions) around the model:

modeller.addSolvent(forcefield)

This constructs a box of water around the solute, ensuring that no water molecule comes closer to any solute atom than
the sum of their van der Waals radii. It also determines the charge of the solute, and adds enough positive or negative
ions to make the system neutral.

When called as shown above, addSolvent() expects that periodic box dimensions were specified in the PDB file,
and it uses them as the size for the water box. If your PDB file does not specify a box size, or if you want to use a
different size, you can specify one:

modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers)

This requests a 5 nm by 3.5 nm by 3.5 nm box. For a non-rectangular box, you can specify the three box vectors
defining the unit cell:

modeller.addSolvent(forcefield, boxVectors=(avec, bvec, cvec))

Another option is to specify a padding distance:

modeller.addSolvent(forcefield, padding=1.0*nanometers)

This determines the largest size of the solute along any axis (x, y, or z). It then creates a cubic box of width (solute
size)+2*(padding). The above line guarantees that no part of the solute comes closer than 1 nm to any edge of the box.

Finally, you can specify the exact number of solvent molecules (including both water and ions) to add. This is useful
when you want to solvate several different conformations of the same molecule while guaranteeing they all have the
same amount of solvent:

modeller.addSolvent(forcefield, numAdded=5000)

By default, addSolvent() creates TIP3P water molecules, but it also supports other water models:

modeller.addSolvent(forcefield, model='tip5p')

Allowed values for the model option are 'tip3p', 'tip3pfb', 'spce', 'tip4pew', 'tip4pfb', and
'tip5p'. Be sure to include the single quotes around the value.

Another option is to add extra ion pairs to give a desired total ionic strength. For example:

modeller.addSolvent(forcefield, ionicStrength=0.1*molar)

This solvates the system with a salt solution whose ionic strength is 0.1 molar. Note that when computing the ionic
strength, it does not consider the ions that were added to neutralize the solute. It assumes those are bound to the solute
and do not contribute to the bulk ionic strength.

By default, Na+ and Cl- ions are used, but you can specify different ones using the positiveIon and negativeIon

options. For example, this creates a potassium chloride solution:

4.2. Adding Solvent 25

OpenMM Users Guide, Release 7.3

modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+')

Allowed values for positiveIon are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'. Allowed values for
negativeIon are 'Cl-', 'Br-', 'F-', and 'I-'. Be sure to include the single quotes around the value. Also be
aware some force fields do not include parameters for all of these ion types, so you need to use types that are supported
by your chosen force field.

4.3 Adding a Membrane

If you want to simulate a membrane protein, you may need to create a membrane as well. You can do this by calling
addMembrane(). Call it instead of addSolvent(), not in addition to it. This one method adds the membrane,
solvent, and ions all at once, making sure the lipid head groups are properly solvated. For example, this creates a
POPC membrane, ensuring at least 1 nm of padding on all sides:

modeller.addMembrane(forcefield, lipidType='POPC', minimumPadding=1*nanometer)

The membrane is added in the XY plane, and the existing protein is assumed to already be oriented and positioned
correctly. When possible, it is recommended to start with a model from the Orientations of Proteins in Membranes
(OPM) database. Otherwise, it is up to you to select the protein position yourself.

Because this method also adds solvent, it takes many of the same arguments as addSolvent(). See the API
documentation for details.

4.4 Adding or Removing Extra Particles

“Extra particles” are particles that do not represent ordinary atoms. This includes the virtual interaction sites used in
many water models, Drude particles, etc. If you are using a force field that involves extra particles, you must add them
to the Topology. To do this, call:

modeller.addExtraParticles(forcefield)

This looks at the force field to determine what extra particles are needed, then modifies each residue to include them.
This function can remove extra particles as well as adding them.

4.5 Removing Water

Call deleteWater to remove all water molecules from the system:

modeller.deleteWater()

This is useful, for example, if you want to simulate it with implicit solvent. Be aware, though, that this only removes
water molecules, not ions or other small molecules that might be considered “solvent”.

4.6 Saving The Results

Once you have finished editing your model, you can immediately use the resulting Topology object and atom
positions as the input to a Simulation. If you plan to simulate it many times, though, it is usually better to save the
result to a new PDB file, then use that as the input for the simulations. This avoids the cost of repeating the modelling

26 Chapter 4. Model Building and Editing

http://opm.phar.umich.edu

OpenMM Users Guide, Release 7.3

operations at the start of every simulation, and also ensures that all your simulations are really starting from exactly
the same structure.

The following example loads a PDB file, adds missing hydrogens, builds a solvent box around it, performs an energy
minimization, and saves the result to a new PDB file.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

print('Loading...')
pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print('Adding solvent...')
modeller.addSolvent(forcefield, model='tip3p', padding=1*nanometer)
print('Minimizing...')
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
integrator = VerletIntegrator(0.001*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)
simulation.minimizeEnergy(maxIterations=100)
print('Saving...')
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open('output.pdb', 'w'))
print('Done')

Example 4-2

4.6. Saving The Results 27

CHAPTER

FIVE

ADVANCED SIMULATION EXAMPLES

In the previous chapter, we looked at some basic scripts for running simulations and saw lots of ways to customize
them. If that is all you want to do—run straightforward molecular simulations—you already know everything you
need to know. Just use the example scripts and customize them in the ways described in Section 3.6.

OpenMM can do far more than that. Your script has the full OpenMM API at its disposal, along with all the power
of the Python language and libraries. In this chapter, we will consider some examples that illustrate more advanced
techniques. Remember that these are still only examples; it would be impossible to give an exhaustive list of everything
OpenMM can do. Hopefully they will give you a sense of what is possible, and inspire you to experiment further on
your own.

Starting in this section, we will assume some knowledge of programming, as well as familiarity with the OpenMM
API. Consult the OpenMM Users Guide and API documentation if you are uncertain about how something works.
You can also use the Python help command. For example,

help(Simulation)

will print detailed documentation on the Simulation class.

5.1 Simulated Annealing

Here is a very simple example of how to do simulated annealing. The following lines linearly reduce the temperature
from 300 K to 0 K in 100 increments, executing 1000 time steps at each temperature:

...
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
for i in range(100):

integrator.setTemperature(3*(100-i)*kelvin)
simulation.step(1000)

Example 5-1

This code needs very little explanation. The loop is executed 100 times. Each time through, it adjusts the temperature
of the LangevinIntegrator and then calls step(1000) to take 1000 time steps.

28

OpenMM Users Guide, Release 7.3

5.2 Applying an External Force to Particles: a Spherical Container

In this example, we will simulate a non-periodic system contained inside a spherical container with radius 2 nm. We
implement the container by applying a harmonic potential to every particle:

E(r) =

{
0 r ≤ 2

100(r − 2)2 r > 2

where r is the distance of the particle from the origin, measured in nm. We can easily do this using OpenMM’s
CustomExternalForce class. This class applies a force to some or all of the particles in the system, where the
energy is an arbitrary function of each particle’s (x, y, z) coordinates. Here is the code to do it:

...
system = forcefield.createSystem(pdb.topology, nonbondedMethod=CutoffNonPeriodic,

nonbondedCutoff=1*nanometer, constraints=None)
force = CustomExternalForce('100*max(0, r-2)^2; r=sqrt(x*x+y*y+z*z)')
system.addForce(force)
for i in range(system.getNumParticles()):

force.addParticle(i, [])
integrator = LangevinIntegrator(300*kelvin, 91/picosecond, 0.002*picoseconds)
...

Example 5-2

The first thing it does is create a CustomExternalForce object and add it to the System. The argument to
CustomExternalForce is a mathematical expression specifying the potential energy of each particle. This can
be any function of x, y, and z you want. It also can depend on global or per-particle parameters. A wide variety of
restraints, steering forces, shearing forces, etc. can be implemented with this method.

Next it must specify which particles to apply the force to. In this case, we want it to affect every particle in the system,
so we loop over them and call addParticle() once for each one. The two arguments are the index of the particle
to affect, and the list of per-particle parameter values (an empty list in this case). If we had per-particle parameters,
such as to make the force stronger for some particles than for others, this is where we would specify them.

Notice that we do all of this immediately after creating the System. That is not an arbitrary choice.

Warning: If you add new forces to a System, you must do so before creating the Simulation. Once you
create a Simulation, modifying the System will have no effect on that Simulation.

5.3 Extracting and Reporting Forces (and other data)

OpenMM provides reporters for three output formats: PDB, PDBx/mmCIF and DCD. All of those formats store only
positions, not velocities, forces, or other data. In this section, we create a new reporter that outputs forces. This
illustrates two important things: how to write a reporter, and how to query the simulation for forces or other data.

Here is the definition of the ForceReporter class:

5.2. Applying an External Force to Particles: a Spherical Container 29

http://www.wwpdb.org/documentation/format33/v3.3.html
http://mmcif.wwpdb.org
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/dcdplugin.html

OpenMM Users Guide, Release 7.3

class ForceReporter(object):
def __init__(self, file, reportInterval):

self._out = open(file, 'w')
self._reportInterval = reportInterval

def __del__(self):
self._out.close()

def describeNextReport(self, simulation):
steps = self._reportInterval - simulation.currentStep%self._reportInterval
return (steps, False, False, True, False, None)

def report(self, simulation, state):
forces = state.getForces().value_in_unit(kilojoules/mole/nanometer)
for f in forces:

self._out.write('%g %g %g\n' % (f[0], f[1], f[2]))

Example 5-3

The constructor and destructor are straightforward. The arguments to the constructor are the output filename and the
interval (in time steps) at which it should generate reports. It opens the output file for writing and records the reporting
interval. The destructor closes the file.

We then have two methods that every reporter must implement: describeNextReport() and report(). A
Simulation object periodically calls describeNextReport() on each of its reporters to find out when that reporter
will next generate a report, and what information will be needed to generate it. The return value should be a six element
tuple, whose elements are as follows:

• The number of time steps until the next report. We calculate this as (report interval)-(current step)%(report
interval). For example, if we want a report every 100 steps and the simulation is currently on step 530, we will
return 100-(530%100) = 70.

• Whether the next report will need particle positions.

• Whether the next report will need particle velocities.

• Whether the next report will need forces.

• Whether the next report will need energies.

• Whether the positions should be wrapped to the periodic box. If None, it will automatically decide whether to
wrap positions based on whether the System uses periodic boundary conditions.

When the time comes for the next scheduled report, the Simulation calls report() to generate the report. The
arguments are the Simulation object, and a State that is guaranteed to contain all the information that was
requested by describeNextReport(). A State object contains a snapshot of information about the simulation,
such as forces or particle positions. We call getForces() to retrieve the forces and convert them to the units we
want to output (kJ/mole/nm). Then we loop over each value and write it to the file. To keep the example simple, we
just print the values in text format, one line per particle. In a real program, you might choose a different output format.

Now that we have defined this class, we can use it exactly like any other reporter. For example,

simulation.reporters.append(ForceReporter('forces.txt', 100))

will output forces to a file called “forces.txt” every 100 time steps.

30 Chapter 5. Advanced Simulation Examples

OpenMM Users Guide, Release 7.3

5.4 Computing Energies

This example illustrates a different sort of analysis. Instead of running a simulation, assume we have already identified
a set of structures we are interested in. These structures are saved in a set of PDB files. We want to loop over all the
files in a directory, load them in one at a time, and compute the potential energy of each one. Assume we have already
created our System and Simulation. The following lines perform the analysis:

import os
for file in os.listdir('structures'):

pdb = PDBFile(os.path.join('structures', file))
simulation.context.setPositions(pdb.positions)
state = simulation.context.getState(getEnergy=True)
print(file, state.getPotentialEnergy())

Example 5-4

We use Python’s listdir() function to list all the files in the directory. We create a PDBFile object for each
one and call setPositions() on the Context to specify the particle positions loaded from the PDB file. We then
compute the energy by calling getState() with the option getEnergy=True, and print it to the console along
with the name of the file.

5.4. Computing Energies 31

CHAPTER

SIX

CREATING FORCE FIELDS

OpenMM uses a simple XML file format to describe force fields. It includes many common force fields, but you can
also create your own. A force field can use all the standard OpenMM force classes, as well as the very flexible custom
force classes. You can even extend the ForceField class to add support for completely new forces, such as ones defined
in plugins. This makes it a powerful tool for force field development.

6.1 Basic Concepts

Let’s start by considering how OpenMM defines a force field. There are a small number of basic concepts to
understand.

6.1.1 Atom Types and Atom Classes

Force field parameters are assigned to atoms based on their “atom types”. Atom types should be the most specific
identification of an atom that will ever be needed. Two atoms should have the same type only if the force field will
always treat them identically in every way.

Multiple atom types can be grouped together into “atom classes”. In general, two types should be in the same class
if the force field usually (but not necessarily always) treats them identically. For example, the α-carbon of an alanine
residue will probably have a different atom type than the α-carbon of a leucine residue, but both of them will probably
have the same atom class.

All force field parameters can be specified either by atom type or atom class. Classes exist as a convenience to make
force field definitions more compact. If necessary, you could define everything in terms of atom types, but when many
types all share the same parameters, it is convenient to only have to specify them once.

6.1.2 Residue Templates

Types are assigned to atoms by matching residues to templates. A template specifies a list of atoms, the type of each
one, and the bonds between them. For each residue in the PDB file, the force field searches its list of templates for one
that has an identical set of atoms with identical bonds between them. When matching templates, neither the order of
the atoms nor their names matter; it only cares about their elements and the set of bonds between them. (The PDB file
reader does care about names, of course, since it needs to figure out which atom each line of the file corresponds to.)

6.1.3 Forces

Once a force field has defined its atom types and residue templates, it must define its force field parameters. This
generally involves one block of XML for each Force object that will be added to the System. The details are different
for each Force, but it generally consists of a set of rules for adding interactions based on bonds and atom types

32

OpenMM Users Guide, Release 7.3

or classes. For example, when adding a HarmonicBondForce, the force field will loop over every pair of bonded
atoms, check their types and classes, and see if they match any of its rules. If so, it will call addBond() on the
HarmonicBondForce. If none of them match, it simply ignores that pair and continues.

6.2 Writing the XML File

The root element of the XML file must be a <ForceField> tag:

<ForceField>
...
</ForceField>

The <ForceField> tag contains the following children:

• An <AtomTypes> tag containing the atom type definitions

• A <Residues> tag containing the residue template definitions

• Zero or more tags defining specific forces

The order of these tags does not matter. They are described in detail below.

6.2.1 <AtomTypes>

The atom type definitions look like this:

<AtomTypes>
<Type name="0" class="N" element="N" mass="14.00672"/>
<Type name="1" class="H" element="H" mass="1.007947"/>
<Type name="2" class="CT" element="C" mass="12.01078"/>
...

</AtomTypes>

There is one <Type> tag for each atom type. It specifies the name of the type, the name of the class it belongs to,
the symbol for its element, and its mass in amu. The names are arbitrary strings: they need not be numbers, as in
this example. The only requirement is that all types have unique names. The classes are also arbitrary strings, and in
general will not be unique. Two types belong to the same class if they list the same value for the class attribute.

6.2.2 <Residues>

The residue template definitions look like this:

<Residues>
<Residue name="ACE">
<Atom name="HH31" type="710"/>
<Atom name="CH3" type="711"/>
<Atom name="HH32" type="710"/>
<Atom name="HH33" type="710"/>
<Atom name="C" type="712"/>
<Atom name="O" type="713"/>
<Bond atomName1="HH31" atomName2="CH3"/>
<Bond atomName1="CH3" atomName2="HH32"/>
<Bond atomName1="CH3" atomName2="HH33"/>
<Bond atomName1="CH3" atomName2="C"/>
<Bond atomName1="C" atomName2="O"/>

6.2. Writing the XML File 33

OpenMM Users Guide, Release 7.3

<ExternalBond atomName="C"/>
</Residue>
<Residue name="ALA">
...

</Residue>
...

</Residues>

There is one <Residue> tag for each residue template. That in turn contains the following tags:

• An <Atom> tag for each atom in the residue. This specifies the name of the atom and its atom type.

• A <Bond> tag for each pair of atoms that are bonded to each other. The atomName1 and atomName2 attributes
are the names of the two bonded atoms. (Some older force fields use the alternate tags to and from to specify
the atoms by index instead of name. This is still supported for backward compatibility, but specifying atoms by
name is recommended, since it makes the residue definition much easier to understand.)

• An <ExternalBond> tag for each atom that will be bonded to an atom of a different residue. atomName is the
name of the atom. (Alternatively, the deprecated from tag may indicate the atom by index instead of name.)

The <Residue> tag may also contain <VirtualSite> tags, as in the following example:

<Residue name="HOH">
<Atom name="O" type="tip4pew-O"/>
<Atom name="H1" type="tip4pew-H"/>
<Atom name="H2" type="tip4pew-H"/>
<Atom name="M" type="tip4pew-M"/>
<VirtualSite type="average3" siteName="M" atomName1="O" atomName2="H1" atomName3="H2"

weight1="0.786646558" weight2="0.106676721" weight3="0.106676721"/>
<Bond atomName1="O" atomName2="H1"/>
<Bond atomName1="O" atomName2="H2"/>

</Residue>

Each <VirtualSite> tag indicates an atom in the residue that should be represented with a virtual site. The type

attribute may equal “average2”, “average3”, “outOfPlane”, or “localCoords”, which correspond to the
TwoParticleAverageSite, ThreeParticleAverageSite, OutOfPlaneSite, and LocalCoordinatesSite classes respectively.
The siteName attribute gives the name of the atom to represent with a virtual site. The atoms it is calculated based on
are specified by atomName1, atomName2, etc. (Some old force fields use the deprecated tags index, atom1, atom2,
etc. to refer to them by index instead of name.)

The remaining attributes are specific to the virtual site class, and specify the parameters for calculating the site
position. For a TwoParticleAverageSite, they are weight1 and weight2. For a ThreeParticleAverageSite, they are
weight1, weight2, and weight3. For an OutOfPlaneSite, they are weight12, weight13, and weightCross. For
a LocalCoordinatesSite, they are p1, p2, and p3 (giving the x, y, and z coordinates of the site position in the local
coordinate system), and wo1, wx1, wy1, wo2, wx2, wy2, ... (giving the weights for computing the origin, x axis, and y
axis).

6.2.3 <Patches>

A “patch” is a set of rules for modifying a residue template (or possibly multiple templates at once). For example a
terminal amino acid is slightly different from one in the middle of a chain. A force field could of course define multiple
templates for each amino acid (standard, N-terminal, C-terminal, and monomer), but since the modifications are the
same for nearly all amino acids, it is simpler to include only the “standard” templates, along with a set of patches for
modifying terminal residues.

Here is an example of a patch definition:

34 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

<Patch name="NTER">
<RemoveAtom name="H"/>
<RemoveBond atomName1="N" atomName2="H"/>
<AddAtom name="H1" type="H"/>
<AddAtom name="H2" type="H"/>
<AddAtom name="H3" type="H"/>
<AddBond atomName1="N" atomName2="H1"/>
<AddBond atomName1="N" atomName2="H2"/>
<AddBond atomName1="N" atomName2="H3"/>
<RemoveExternalBond atomName="N"/>
<ChangeAtom name="N" type="N3"/>

</Patch>

There is one <Patch> tag for each patch definition. That in turn may contain any of the following tags:

• An <AddAtom> tag indicates that an atom should be added to the template. It specifies the name of the atom
and its atom type.

• A <ChangeAtom> tag indicates that the type of an atom already present in the template should be altered. It
specifies the name of the atom and its new atom type.

• A <RemoveAtom> tag indicates that an atom should be removed from the template. It specifies the name of the
atom to remove.

• An <AddBond> tag indicates that a bond should be added to the template. It specifies the names of the two
bonded atoms.

• A <RemoveBond> tag indicates that a bond already present in the template should be removed. It specifies the
names of the two bonded atoms.

• An <AddExternalBond> tag indicates that a new external bond should be added to the template. It specifies
the name of the bonded atom.

• A <RemoveExternalBond> tag indicates that an external bond aleady present in the template should be
removed. It specifies the name of the bonded atom.

In addition to defining the patches, you also must identify which residue templates each patch can be applied to. This
can be done in two ways. The more common one is to have each template identify the patches that can be applied to
it. This is done with an <AllowPatch> tag:

<Residue name="ALA">
<AllowPatch name="CTER"/>
<AllowPatch name="NTER"/>
...

</Residue>

Alternatively, the patch can indicate which residues it may be applied to. This is done with an <ApplyToResidue>

tag:

<Patch name="NTER">
<ApplyToResidue name="ALA"/>
<ApplyToResidue name="ARG"/>
...

</Patch>

A patch can alter multiple templates at once. This is useful for creating bonds between molecules, and allows the atom
types in one residue to depend on the identity of the other residue it is bonded to. To create a multi-residue patch,
added a residues attribute to the <Patch> tag specifying how many residues that patch covers. Then whenever you
refer to an atom, prefix its name with the index of the residue it belongs to:

6.2. Writing the XML File 35

OpenMM Users Guide, Release 7.3

<Patch name="Disulfide" residues="2">
<RemoveAtom name="1:HG"/>
<RemoveAtom name="2:HG"/>
<AddBond atomName1="1:SG" atomName2="2:SG"/>
<ApplyToResidue name="1:CYS"/>
<ApplyToResidue name="2:CYS"/>

</Patch>

In this example, the patch modifies two residues of the same type, but that need not always be true. Each
<ApplyToResidue> tag therefore indicates which one of the residue templates it modifies may be of the specified
type. Similarly, if a residue template includes an <AcceptPatch> tag for a multi-residue patch, it must specify the
name of the patch, followed by the index of the residue within that patch:

<AllowPatch name="Disulfide:1"/>

6.2.4 Missing residue templates

Caution: These features are experimental, and their API is subject to change.

You can use the getUnmatchedResidues() method to get a list of residues in the provided topology object
that do not currently have a matching residue template defined in the ForceField.

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
unmatched_residues = forcefield.getUnmatchedResidues(topology)

This is useful for identifying issues with prepared systems, debugging issues with residue template definitions, or
identifying which additional residues need to be parameterized.

As a convenience for parameterizing new residues, you can also get a list of residues and empty residue templates
using generateTemplatesForUnmatchedResidues()

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
[templates, residues] = forcefield.generateTemplatesForUnmatchedResidues(topology)
Se the atom types
for template in templates:

for atom in template.atoms:
atom.type = ... # set the atom types here

Register the template with the forcefield.
forcefield.registerResidueTemplate(template)

If you find that templates seem to be incorrectly matched, another useful function getMatchingTemplates()
can help you identify which templates are being matched:

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
templates = forcefield.getMatchingTemplates(topology)
for (residue, template) in zip(pdb.topology.residues(), templates):

print("Residue %d %s matched template %s" % (residue.id, residue.name, template.
↪→name))

36 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

6.2.5 <HarmonicBondForce>

To add a HarmonicBondForce to the System, include a tag that looks like this:

<HarmonicBondForce>
<Bond class1="C" class2="C" length="0.1525" k="259408.0"/>
<Bond class1="C" class2="CA" length="0.1409" k="392459.2"/>
<Bond class1="C" class2="CB" length="0.1419" k="374049.6"/>
...

</HarmonicBondForce>

Every <Bond> tag defines a rule for creating harmonic bond interactions between atoms. Each tag may identify the
atoms either by type (using the attributes type1 and type2) or by class (using the attributes class1 and class2). For
every pair of bonded atoms, the force field searches for a rule whose atom types or atom classes match the two atoms.
If it finds one, it calls addBond() on the HarmonicBondForce with the specified parameters. Otherwise, it ignores
that pair and continues. length is the equilibrium bond length in nm, and k is the spring constant in kJ/mol/nm2.

6.2.6 <HarmonicAngleForce>

To add a HarmonicAngleForce to the System, include a tag that looks like this:

<HarmonicAngleForce>
<Angle class1="C" class2="C" class3="O" angle="2.094" k="669.44"/>
<Angle class1="C" class2="C" class3="OH" angle="2.094" k="669.44"/>
<Angle class1="CA" class2="C" class3="CA" angle="2.094" k="527.184"/>
...

</HarmonicAngleForce>

Every <Angle> tag defines a rule for creating harmonic angle interactions between triplets of atoms. Each tag may
identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes class1,
class2, ...). The force field identifies every set of three atoms in the system where the first is bonded to the second,
and the second to the third. For each one, it searches for a rule whose atom types or atom classes match the three atoms.
If it finds one, it calls addAngle() on the HarmonicAngleForce with the specified parameters. Otherwise, it ignores
that set and continues. angle is the equilibrium angle in radians, and k is the spring constant in kJ/mol/radian2.

6.2.7 <PeriodicTorsionForce>

To add a PeriodicTorsionForce to the System, include a tag that looks like this:

<PeriodicTorsionForce>
<Proper class1="HC" class2="CT" class3="CT" class4="CT" periodicity1="3" phase1="0.0"

k1="0.66944"/>
<Proper class1="HC" class2="CT" class3="CT" class4="HC" periodicity1="3" phase1="0.0"

k1="0.6276"/>
...
<Improper class1="N" class2="C" class3="CT" class4="O" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
<Improper class1="N" class2="C" class3="CT" class4="H" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
...

</PeriodicTorsionForce>

Every child tag defines a rule for creating periodic torsion interactions between sets of four atoms. Each tag may
identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes class1,
class2, ...).

6.2. Writing the XML File 37

OpenMM Users Guide, Release 7.3

The force field recognizes two different types of torsions: proper and improper. A proper torsion involves four atoms
that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An improper torsion involves a central atom and three others that
are bonded to it: atoms 2, 3, and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in
the system of each of these types. For each one, it searches for a rule whose atom types or atom classes match the four
atoms. If it finds one, it calls addTorsion() on the PeriodicTorsionForce with the specified parameters. Otherwise, it
ignores that set and continues. periodicity1 is the periodicity of the torsion, phase1 is the phase offset in radians,
and k1 is the force constant in kJ/mol.

Each torsion definition can specify multiple periodic torsion terms to add to its atoms. To add a second one, just add
three more attributes: periodicity2, phase2, and k2. You can have as many terms as you want. Here is an example
of a rule that adds three torsion terms to its atoms:

<Proper class1="CT" class2="CT" class3="CT" class4="CT"
periodicity1="3" phase1="0.0" k1="0.75312"
periodicity2="2" phase2="3.14159265359" k2="1.046"
periodicity3="1" phase3="3.14159265359" k3="0.8368"/>

You can also use wildcards when defining torsions. To do this, simply leave the type or class name for an atom empty.
That will cause it to match any atom. For example, the following definition will match any sequence of atoms where
the second atom has class OS and the third has class P:

<Proper class1="" class2="OS" class3="P" class4="" periodicity1="3" phase1="0.0" k1=
↪→"1.046"/>

6.2.8 <RBTorsionForce>

To add an RBTorsionForce to the System, include a tag that looks like this:

<RBTorsionForce>
<Proper class1="CT" class2="CT" class3="OS" class4="CT" c0="2.439272" c1="4.807416"

c2="-0.8368" c3="-6.409888" c4="0" c5="0" />
<Proper class1="C" class2="N" class3="CT" class4="C" c0="10.46" c1="-3.34720"

c2="-7.1128" c3="0" c4="0" c5="0" />
...
<Improper class1="N" class2="C" class3="CT" class4="O" c0="0.8368" c1="0"

c2="-2.76144" c3="0" c4="3.3472" c5="0" />
<Improper class1="N" class2="C" class3="CT" class4="H" c0="29.288" c1="-8.368"

c2="-20.92" c3="0" c4="0" c5="0" />
...

</RBTorsionForce>

Every child tag defines a rule for creating Ryckaert-Bellemans torsion interactions between sets of four atoms. Each
tag may identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes
class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper torsion involves four atoms
that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An improper torsion involves a central atom and three others that
are bonded to it: atoms 2, 3, and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms
in the system of each of these types. For each one, it searches for a rule whose atom types or atom classes match the
four atoms. If it finds one, it calls addTorsion() on the RBTorsionForce with the specified parameters. Otherwise, it
ignores that set and continues. The attributes c0 through c5 are the coefficients of the terms in the Ryckaert-Bellemans
force expression.

You can also use wildcards when defining torsions. To do this, simply leave the type or class name for an atom empty.
That will cause it to match any atom. For example, the following definition will match any sequence of atoms where
the second atom has class OS and the third has class P:

38 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

<Proper class1="" class2="OS" class3="P" class4="" c0="2.439272" c1="4.807416"
c2="-0.8368" c3="-6.409888" c4="0" c5="0" />

6.2.9 <CMAPTorsionForce>

To add a CMAPTorsionForce to the System, include a tag that looks like this:

<CMAPTorsionForce>
<Map>
0.0 0.809 0.951 0.309
-0.587 -1.0 -0.587 0.309
0.951 0.809 0.0 -0.809
-0.951 -0.309 0.587 1.0

</Map>
<Torsion map="0" class1="CT" class2="CT" class3="C" class4="N" class5="CT"/>
<Torsion map="0" class1="N" class2="CT" class3="C" class4="N" class5="CT"/>
...

</CMAPTorsionForce>

Each <Map> tag defines an energy correction map. Its content is the list of energy values in kJ/mole, listed in the
correct order for CMAPTorsionForce’s addMap() method and separated by white space. See the API documentation
for details. The size of the map is determined from the number of energy values.

Each <Torsion> tag defines a rule for creating CMAP torsion interactions between sets of five atoms. The tag may
identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes class1,
class2, ...). The force field identifies every set of five atoms that are bonded in sequence: 1 to 2, 2 to 3, 3 to 4, and
4 to 5. For each one, it searches for a rule whose atom types or atom classes match the five atoms. If it finds one,
it calls addTorsion() on the CMAPTorsionForce with the specified parameters. Otherwise, it ignores that set and
continues. The first torsion is defined by the sequence of atoms 1-2-3-4, and the second one by atoms 2-3-4-5. map is
the index of the map to use, starting from 0, in the order they are listed in the file.

You can also use wildcards when defining torsions. To do this, simply leave the type or class name for an atom empty.
That will cause it to match any atom. For example, the following definition will match any sequence of five atoms
where the middle three have classes CT, C, and N respectively:

<Torsion map="0" class1="" class2="CT" class3="C" class4="N" class5=""/>

6.2.10 <NonbondedForce>

To add a NonbondedForce to the System, include a tag that looks like this:

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<Atom type="0" charge="-0.4157" sigma="0.32499" epsilon="0.71128"/>
<Atom type="1" charge="0.2719" sigma="0.10690" epsilon="0.06568"/>
<Atom type="2" charge="0.0337" sigma="0.33996" epsilon="0.45772"/>
...

</NonbondedForce>

The <NonbondedForce> tag has two attributes coulomb14scale and lj14scale that specify the scale factors
between pairs of atoms separated by three bonds. After setting the nonbonded parameters for all atoms, the force field
calls createExceptionsFromBonds() on the NonbondedForce, passing in these scale factors as arguments.

Each <Atom> tag specifies the nonbonded parameters for one atom type (specified with the type attribute) or atom
class (specified with the class attribute). It is fine to mix these two methods, having some tags specify a type and

6.2. Writing the XML File 39

OpenMM Users Guide, Release 7.3

others specify a class. However you do it, you must make sure that a unique set of parameters is defined for every
atom type. charge is measured in units of the proton charge, sigma is in nm, and epsilon is in kJ/mole.

6.2.11 <GBSAOBCForce>

To add a GBSAOBCForce to the System, include a tag that looks like this:

<GBSAOBCForce>
<Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
<Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
<Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
...

</GBSAOBCForce>

Each <Atom> tag specifies the OBC parameters for one atom type (specified with the type attribute) or atom class
(specified with the class attribute). It is fine to mix these two methods, having some tags specify a type and others
specify a class. However you do it, you must make sure that a unique set of parameters is defined for every atom type.
charge is measured in units of the proton charge, radius is the GBSA radius in nm, and scale is the OBC scaling
factor.

6.2.12 <CustomBondForce>

To add a CustomBondForce to the System, include a tag that looks like this:

<CustomBondForce energy="scale*k*(r-r0)^2">
<GlobalParameter name="scale" defaultValue="0.5"/>
<PerBondParameter name="k"/>
<PerBondParameter name="r0"/>
<Bond class1="OW" class2="HW" r0="0.09572" k="462750.4"/>
<Bond class1="HW" class2="HW" r0="0.15136" k="462750.4"/>
<Bond class1="C" class2="C" r0="0.1525" k="259408.0"/>
...

</CustomBondForce>

The energy expression for the CustomBondForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each bond as a function of its length r. It also may depend on an arbitrary
list of global or per-bond parameters. Use a <GlobalParameter> tag to define a global parameter, and a
<PerBondParameter> tag to define a per-bond parameter.

Every <Bond> tag defines a rule for creating custom bond interactions between atoms. Each tag may identify the
atoms either by type (using the attributes type1 and type2) or by class (using the attributes class1 and class2).
For every pair of bonded atoms, the force field searches for a rule whose atom types or atom classes match the two
atoms. If it finds one, it calls addBond() on the CustomBondForce. Otherwise, it ignores that pair and continues. The
remaining attributes are the values to use for the per-bond parameters. All per-bond parameters must be specified for
every <Bond> tag, and the attribute name must match the name of the parameter. For instance, if there is a per-bond
parameter with the name “k”, then every <Bond> tag must include an attribute called k.

6.2.13 <CustomAngleForce>

To add a CustomAngleForce to the System, include a tag that looks like this:

<CustomAngleForce energy="scale*k*(theta-theta0)^2">
<GlobalParameter name="scale" defaultValue="0.5"/>
<PerAngleParameter name="k"/>

40 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

<PerAngleParameter name=" theta0"/>
<Angle class1="HW" class2="OW" class3="HW" theta0="1.824218" k="836.8"/>
<Angle class1="HW" class2="HW" class3="OW" theta0="2.229483" k="0.0"/>
<Angle class1="C" class2="C" class3="O" theta0="2.094395" k="669.44"/>
...

</CustomAngleForce>

The energy expression for the CustomAngleForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each angle as a function of the angle theta. It also may depend on an arbitrary
list of global or per-angle parameters. Use a <GlobalParameter> tag to define a global parameter, and a
<PerAngleParameter> tag to define a per-angle parameter.

Every <Angle> tag defines a rule for creating custom angle interactions between triplets of atoms. Each tag may
identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes class1,
class2, ...). The force field identifies every set of three atoms in the system where the first is bonded to the second,
and the second to the third. For each one, it searches for a rule whose atom types or atom classes match the three
atoms. If it finds one, it calls addAngle() on the CustomAngleForce. Otherwise, it ignores that set and continues.
The remaining attributes are the values to use for the per-angle parameters. All per-angle parameters must be specified
for every <Angle> tag, and the attribute name must match the name of the parameter. For instance, if there is a
per-angle parameter with the name “k”, then every <Angle> tag must include an attribute called k.

6.2.14 <CustomTorsionForce>

To add a CustomTorsionForce to the System, include a tag that looks like this:

<CustomTorsionForce energy="scale*k*(1+cos(per*theta-phase))">
<GlobalParameter name="scale" defaultValue="1"/>
<PerTorsionParameter name="k"/>
<PerTorsionParameter name="per"/>
<PerTorsionParameter name="phase"/>
<Proper class1="HC" class2="CT" class3="CT" class4="CT" per="3" phase="0.0" k="0.
↪→66944"/>
<Proper class1="HC" class2="CT" class3="CT" class4="HC" per="3" phase="0.0" k="0.6276
↪→"/>
...
<Improper class1="N" class2="C" class3="CT" class4="O" per="2" phase="3.14159265359"

k="4.6024"/>
<Improper class1="N" class2="C" class3="CT" class4="H" per="2" phase="3.14159265359"

k="4.6024"/>
...

</CustomTorsionForce>

The energy expression for the CustomTorsionForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each torsion as a function of the angle theta. It also may depend on an arbitrary
list of global or per-torsion parameters. Use a <GlobalParameter> tag to define a global parameter, and a
<PerTorsionParameter> tag to define a per-torsion parameter.

Every child tag defines a rule for creating custom torsion interactions between sets of four atoms. Each tag may
identify the atoms either by type (using the attributes type1, type2, ...) or by class (using the attributes class1,
class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper torsion involves four atoms
that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An improper torsion involves a central atom and three others that
are bonded to it: atoms 2, 3, and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in
the system of each of these types. For each one, it searches for a rule whose atom types or atom classes match the four
atoms. If it finds one, it calls addTorsion() on the CustomTorsionForce with the specified parameters. Otherwise,

6.2. Writing the XML File 41

OpenMM Users Guide, Release 7.3

it ignores that set and continues. The remaining attributes are the values to use for the per- torsion parameters. Every
<Torsion> tag must include one attribute for every per-torsion parameter, and the attribute name must match the
name of the parameter.

You can also use wildcards when defining torsions. To do this, simply leave the type or class name for an atom empty.
That will cause it to match any atom. For example, the following definition will match any sequence of atoms where
the second atom has class OS and the third has class P:

<Proper class1="" class2="OS" class3="P" class4="" per="3" phase="0.0" k="0.66944"/>

6.2.15 <CustomNonbondedForce>

To add a CustomNonbondedForce to the System, include a tag that looks like this:

<CustomNonbondedForce energy="scale*epsilon1*epsilon2*((sigma1+sigma2)/r)^12"
↪→bondCutoff="3">
<GlobalParameter name="scale" defaultValue="1"/>
<PerParticleParameter name="sigma"/>
<PerParticleParameter name="epsilon"/>
<Atom type="0" sigma="0.3249" epsilon="0.7112"/>
<Atom type="1" sigma="0.1069" epsilon="0.0656"/>
<Atom type="2" sigma="0.3399" epsilon="0.4577"/>
...

</CustomNonbondedForce>

The energy expression for the CustomNonbondedForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each pairwise interaction as a function of the distance r. It also may depend on an
arbitrary list of global or per-particle parameters. Use a <GlobalParameter> tag to define a global parameter, and a
<PerParticleParameter> tag to define a per-particle parameter.

Exclusions are created automatically based on the bondCutoff attribute. After setting the nonbonded parameters for
all atoms, the force field calls createExclusionsFromBonds() on the CustomNonbondedForce, passing in this
value as its argument. To avoid creating exclusions, set bondCutoff to 0.

Each <Atom> tag specifies the parameters for one atom type (specified with the type attribute) or atom class (specified
with the class attribute). It is fine to mix these two methods, having some tags specify a type and others specify a
class. However you do it, you must make sure that a unique set of parameters is defined for every atom type. The
remaining attributes are the values to use for the per-atom parameters. All per-atom parameters must be specified for
every <Atom> tag, and the attribute name must match the name of the parameter. For instance, if there is a per-atom
parameter with the name “radius”, then every <Atom> tag must include an attribute called radius.

CustomNonbondedForce also allows you to define tabulated functions. See section 6.2.20 for details.

6.2.16 <CustomGBForce>

To add a CustomGBForce to the System, include a tag that looks like this:

<CustomGBForce>
<GlobalParameter name="solventDielectric" defaultValue="78.3"/>
<GlobalParameter name="soluteDielectric" defaultValue="1"/>
<PerParticleParameter name="charge"/>
<PerParticleParameter name="radius"/>
<PerParticleParameter name="scale"/>
<ComputedValue name="I" type="ParticlePairNoExclusions">

step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-sr2*sr2/r)+0.5*log(L/U)/r+C);
U=r+sr2; C=2*(1/or1-1/L)*step(sr2-r-or1); L=max(or1, D); D=abs(r-sr2); sr2 =

42 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

scale2*or2; or1 = radius1-0.009; or2 = radius2-0.009
</ComputedValue>
<ComputedValue name="B" type="SingleParticle">
1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius); psi=I*or; or=radius-0.009

</ComputedValue>
<EnergyTerm type="SingleParticle">
28.3919551*(radius+0.14)^2*(radius/B)^6-0.5*138.935456*

(1/soluteDielectric-1/solventDielectric)*charge^2/B
</EnergyTerm>
<EnergyTerm type="ParticlePair">
-138.935456*(1/soluteDielectric-1/solventDielectric)*charge1*charge2/f;

f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))
</EnergyTerm>
<Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
<Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
<Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
...

</CustomGBForce>

The above (rather complicated) example defines a generalized Born model that is equivalent to GBSAOBCForce. The
definition consists of a set of computed values (defined by <ComputedValue> tags) and energy terms (defined by
<EnergyTerm> tags), each of which is evaluated according to a mathematical expression. See the API documentation
for details.

The expressions may depend on an arbitrary list of global or per-atom parameters. Use a <GlobalParameter> tag
to define a global parameter, and a <PerAtomParameter> tag to define a per-atom parameter.

Each <Atom> tag specifies the parameters for one atom type (specified with the type attribute) or atom class (specified
with the class attribute). It is fine to mix these two methods, having some tags specify a type and others specify a
class. However you do it, you must make sure that a unique set of parameters is defined for every atom type. The
remaining attributes are the values to use for the per-atom parameters. All per-atom parameters must be specified for
every <Atom> tag, and the attribute name must match the name of the parameter. For instance, if there is a per-atom
parameter with the name “radius”, then every <Atom> tag must include an attribute called radius.

CustomGBForce also allows you to define tabulated functions. See section 6.2.20 for details.

6.2.17 <CustomHbondForce>

To add a CustomHbondForce to the System, include a tag that looks like this:

<CustomHbondForce particlesPerDonor="3" particlesPerAcceptor="2" bondCutoff="2"
energy="scale*k*(distance(a1,d1)-r0)^2*(angle(a1,d1,d2)-theta0)^2">

<GlobalParameter name="scale" defaultValue="1"/>
<PerDonorParameter name="theta0"/>
<PerAcceptorParameter name="k"/>
<PerAcceptorParameter name="r0"/>
<Donor class1="H" class2="N" class3="C" theta0="2.1"/>
<Acceptor class1="O" class2="C" k="115.0" r0="0.2"/>
...

</CustomHbondForce>

The energy expression for the CustomHbondForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each donor-acceptor interaction as a function of various particle coordinates,
distances, and angles. See the API documentation for details. particlesPerDonor specifies the number of particles
that make up a donor group, and particlesPerAcceptor specifies the number of particles that make up an acceptor
group.

6.2. Writing the XML File 43

OpenMM Users Guide, Release 7.3

The expression may depend on an arbitrary list of global, per-donor, or per-acceptor parameters. Use a
<GlobalParameter> tag to define a global parameter, a <PerDonorParameter> tag to define a per-donor
parameter, and a <PerAcceptorParameter> tag to define a per-acceptor parameter.

Exclusions are created automatically based on the bondCutoff attribute. If any atom of a donor is within the specified
distance (measured in bonds) of any atom of an acceptor, an exclusion is added to prevent them from interacting with
each other. If a donor and an acceptor share any atom in common, that is a bond distance of 0, so they are always
excluded.

Every <Donor> or <Acceptor> tag defines a rule for creating donor or acceptor groups. The number of atoms
specified in each one must match the value of particlesPerDonor or particlesPerAcceptor specified in the
parent tag. Each tag may identify the atoms either by type (using the attributes type1, type2, ...) or by class (using
the attributes class1, class2, ...). The force field considers every atom in the system (if the number of atoms is 1),
every pair of bonded atoms (if the number of atoms is 2), or every set of three atoms where the first is bonded to the
second and the second to the third (if the number of atoms is 3). For each one, it searches for a rule whose atom types
or atom classes match the atoms. If it finds one, it calls addDonor() or addAcceptor() on the CustomHbondForce.
Otherwise, it ignores that set and continues. The remaining attributes are the values to use for the per-donor and
per-acceptor parameters. All parameters must be specified for every tag, and the attribute name must match the name
of the parameter. For instance, if there is a per-donor parameter with the name “k”, then every <Donor> tag must
include an attribute called k.

CustomHbondForce also allows you to define tabulated functions. See section 6.2.20 for details.

6.2.18 <CustomManyParticleForce>

To add a CustomManyParticleForce to the System, include a tag that looks like this:

<CustomManyParticleForce particlesPerSet="3" permutationMode="UniqueCentralParticle"
bondCutoff="3" energy="scale*(distance(p1,p2)-r1)*(distance(p1,p3)-r1)">

<GlobalParameter name="scale" defaultValue="1"/>
<PerParticleParameter name="r"/>
<TypeFilter index="0" types="1,2"/>
<Atom type="0" r="0.31" filterType="0"/>
<Atom type="1" r="0.25" filterType="0"/>
<Atom type="2" r="0.33" filterType="1"/>
...

</CustomManyParticleForce>

The energy expression for the CustomManyParticleForce is specified by the energy attribute. This is a mathematical
expression that gives the energy of each interaction as a function of various particle coordinates, distances, and angles.
See the API documentation for details. particlesPerSet specifies the number of particles involved in the interaction
and permutationMode specifies the permutation mode.

The expression may depend on an arbitrary list of global or per-atom parameters. Use a <GlobalParameter> tag to
define a global parameter, and a <PerAtomParameter> tag to define a per-atom parameter.

Exclusions are created automatically based on the bondCutoff attribute. After setting the nonbonded parameters for
all atoms, the force field calls createExclusionsFromBonds() on the CustomManyParticleForce, passing in this
value as its argument. To avoid creating exclusions, set bondCutoff to 0.

Type filters may be specified with a <TypeFilter> tag. The index attribute specifies the index of the particle to
apply the filter to, and types is a comma separated list of allowed types.

Each <Atom> tag specifies the parameters for one atom type (specified with the type attribute) or atom class (specified
with the class attribute). It is fine to mix these two methods, having some tags specify a type and others specify a
class. However you do it, you must make sure that a unique set of parameters is defined for every atom type. In
addition, each <Atom> tag must include the filterType attribute, which specifies the atom type for use in type
filters. The remaining attributes are the values to use for the per-atom parameters. All per-atom parameters must be

44 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

specified for every <Atom> tag, and the attribute name must match the name of the parameter. For instance, if there is
a per-atom parameter with the name “radius”, then every <Atom> tag must include an attribute called radius.

CustomManyParticleForce also allows you to define tabulated functions. See section 6.2.20 for details.

6.2.19 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions. These expressions are specified
as character strings, and may involve a variety of standard operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^ (power). Parentheses “(“and
“)” may be used for grouping.

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, sinh, cosh,
tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. step(x) = 0 if x < 0, 1 otherwise. delta(x) = 1 if x is 0, 0
otherwise. select(x,y,z) = z if x = 0, y otherwise. Some custom forces allow additional functions to be defined from
tabulated values.

Numbers may be given in either decimal or exponential form. All of the following are valid numbers: 5, -3.1, 1e6, and
3.12e-2.

The variables that may appear in expressions are specified in the API documentation for each force class. In addition,
an expression may be followed by definitions for intermediate values that appear in the expression. A semicolon “;” is
used as a delimiter between value definitions. For example, the expression

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses of a value must appear
before that value’s definition.

6.2.20 Tabulated Functions

Some forces, such as CustomNonbondedForce and CustomGBForce, allow you to define tabulated functions. To
define a function, include a <Function> tag inside the <CustomNonbondedForce> or <CustomGBForce> tag:

<Function name="myfn" type="Continuous1D" min="-5" max="5">
0.983674857694 -0.980096396266 -0.975743130031 -0.970451936613 -0.964027580076
-0.956237458128 -0.946806012846 -0.935409070603 -0.921668554406 -0.905148253645
-0.885351648202 -0.861723159313 -0.833654607012 -0.800499021761 -0.761594155956
-0.716297870199 -0.664036770268 -0.604367777117 -0.537049566998 -0.46211715726
-0.379948962255 -0.291312612452 -0.197375320225 -0.099667994625 0.0
0.099667994625 0.197375320225 0.291312612452 0.379948962255 0.46211715726
0.537049566998 0.604367777117 0.664036770268 0.716297870199 0.761594155956
0.800499021761 0.833654607012 0.861723159313 0.885351648202 0.905148253645
0.921668554406 0.935409070603 0.946806012846 0.956237458128 0.964027580076
0.970451936613 0.975743130031 0.980096396266 0.983674857694 0.986614298151
0.989027402201
</Function>

The tag’s attributes define the name of the function, the type of function, and the range of values for which it is defined.
The required set of attributed depends on the function type:

6.2. Writing the XML File 45

OpenMM Users Guide, Release 7.3

Type Required Attributes
Continuous1D min, max
Continuous2D xmin, ymin, xmax, ymax, xsize, ysize
Continuous3D xmin, ymin, zmin, xmax, ymax, zmax, xsize, ysize, zsize
Discrete1D
Discrete2D xsize, ysize
Discrete3D xsize, ysize, zsize

The “min” and “max” attributes define the range of the independent variables for a continuous function. The “size”
attributes define the size of the table along each axis. The tabulated values are listed inside the body of the tag, with
successive values separated by white space. See the API documentation for more details.

6.2.21 Residue Template Parameters

In forces that use an <Atom> tag to define parameters for atom types or classes, there is an alternate mechanism you
can also use: defining those parameter values in the residue template. This is useful for situations that come up in
certain force fields. For example, NonbondedForce and GBSAOBCForce each have a charge attribute. If you only
have to define the charge of each atom type once, that is more convenient and avoids potential bugs. Also, many force
fields have a different charge for each atom type, but Lennard-Jones parameters that are the same for all types in a
class. It would be preferable not to have to repeat those parameter values many times over.

When writing a residue template, you can add arbitrary additional attributes to each <Atom> tag. For example, you
might include a charge attribute as follows:

<Atom name="CA" type="53" charge="0.0381"/>

When writing the tag for a force, you can then include a <UseAttributeFromResidue> tag inside it. This indicates
that a specified attribute should be taken from the residue template. Finally, you simply omit that attribute in the force’s
own <Atom> tags. For example:

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom class="CX" sigma="0.339966950842" epsilon="0.4577296"/>
...

</NonbondedForce>

Notice that the charge attribute is missing, and that the parameters are specified by class, not by type. This means
that sigma and epsilon only need to be specified once for each class. The atom charges, which are different for each
type, are taken from the residue template instead.

6.2.22 Including Other Files

Sometimes it is useful to split a force field definition into multiple files, but still be able to use the force field by
specifying only a single file. You can accomplish this with the <Include> tag. For example:

<ForceField>
<Include file="definitions.xml"/>
...

</ForceField>

The file attribute gives the path of the file to include. It may be relative either to the directory containing the parent
XML file (the one with the <Include> tag) or the OpenMM data directory (the one containing built in force fields).

46 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

6.3 Using Multiple Files

If multiple XML files are specified when a ForceField is created, their definitions are combined as follows.

• A file may refer to atom types and classes that it defines, as well as those defined in previous files. It may not
refer to ones defined in later files. This means that the order in which files are listed when calling the ForceField
constructor is potentially significant.

• Forces that involve per-atom parameters (such as NonbondedForce or GBSAOBCForce) require parameter
values to be defined for every atom type. It does not matter which file those types are defined in. For example,
files that define explicit water models generally define a small number of atom types, as well as nonbonded
parameters for those types. In contrast, files that define implicit solvent models do not define any new atom
types, but provide parameters for all the atom types that were defined in the main force field file.

• For other forces, the files are effectively independent. For example, if two files each include a
<HarmonicBondForce> tag, bonds will be created based on the rules in the first file, and then more bonds
will be created based on the rules in the second file. This means you could potentially end up with multiple
bonds between a single pair of atoms.

6.4 Extending ForceField

The ForceField class is designed to be modular and extensible. This means you can add support for entirely new force
types, such as ones implemented with plugins.

6.4.1 Adding new force types

For every force class, there is a “generator” class that parses the corresponding XML tag, then creates Force objects
and adds them to the System. ForceField maintains a map of tag names to generator classes. When a ForceField
is created, it scans through the XML files, looks up the generator class for each tag, and asks that class to create a
generator object based on it. Then, when you call createSystem(), it loops over each of its generators and asks
each one to create its Force object. Adding a new Force type therefore is simply a matter of creating a new generator
class and adding it to ForceField’s map.

The generator class must define two methods. First, it needs a static method with the following signature to parse the
XML tag and create the generator:

@staticmethod
def parseElement(element, forcefield):

element is the XML tag (an xml.etree.ElementTree.Element object) and forcefield is the ForceField being created.
This method should create a generator and add it to the ForceField:

generator = MyForceGenerator()
forcefield._forces.append(generator)

It then should parse the information contained in the XML tag and configure the generator based on it.

Second, it must define a method with the following signature:

def createForce(self, system, data, nonbondedMethod, nonbondedCutoff, args):

When createSystem() is called on the ForceField, it first creates the System object, then loops over each of its
generators and calls createForce() on each one. This method should create the Force object and add it to the
System. data is a ForceField._SystemData object containing information about the System being created (atom

6.3. Using Multiple Files 47

OpenMM Users Guide, Release 7.3

types, bonds, angles, etc.), system is the System object, and the remaining arguments are values that were passed to
createSystem(). To get a better idea of how this works, look at the existing generator classes in forcefield.py.

The generator class may optionally also define a method with the following signature:

def postprocessSystem(self, system, data, args):

If this method exists, it will be called after all Forces have been created. This gives generators a chance to make
additional changes to the System.

Finally, you need to register your class by adding it to ForceField’s map:

forcefield.parsers['MyForce'] = MyForceGenerator.parseElement

The key is the XML tag name, and the value is the static method to use for parsing it.

Now you can simply create a ForceField object as usual. If an XML file contains a <MyForce> tag, it will be
recognized and processed correctly.

6.4.2 Adding residue template generators

Caution: This feature is experimental, and its API is subject to change.

Typically, when ForceField encounters a residue it does not have a template for, it simply raises an Exception,
since it does not know how to assign atom types for the unknown residue.

However, ForceField has an API for registering residue template generators that are called when a residue without
an existing template is encountered. These generators may create new residue templates that match existing atom
types and parameters, or can even create new atom types and new parameters that are added to ForceField. This
functionality can be useful for adding residue template generators that are able to parameterize small molecules that
are not represented in a protein or nucleic acid forcefield, for example, or for creating new residue templates for
post-translationally modified residues, covalently-bound ligands, or unnatural amino acids or bases.

To register a new residue template generator named generator, simply call the
registerTemplateGenerator() method on an existing ForceField object:

forcefield.registerTemplateGenerator(generator)

This generator function must conform to the following API:

def generator(forcefield, residue):
"""
Parameters

forcefield : simtk.openmm.app.ForceField

The ForceField object to which residue templates and/or parameters are to be
↪→added.

residue : simtk.openmm.app.Topology.Residue
The residue topology for which a template is to be generated.

Returns

success : bool

If the generator is able to successfully parameterize the residue, `True` is
↪→returned.

If the generator cannot parameterize the residue, it should return `False`
↪→and not

48 Chapter 6. Creating Force Fields

OpenMM Users Guide, Release 7.3

modify `forcefield`.

The generator should either register a residue template directly with
`forcefield.registerResidueTemplate(template)` or it should call `forcefield.

↪→loadFile(file)`
to load residue definitions from an ffxml file.

It can also use the `ForceField` programmatic API to add additional atom types
↪→(via

`forcefield.registerAtomType(parameters)`) or additional parameters.

"""

The ForceField object will be modified by the residue template generator as residues without previously
defined templates are encountered. Because these templates are added to the ForceField as new residue types
are encountered, subsequent residues will be parameterized using the same residue templates without calling the
generator again.

6.4. Extending ForceField 49

CHAPTER

SEVEN

THE OPENMM LIBRARY: INTRODUCTION

7.1 What Is the OpenMM Library?

OpenMM consists of two parts. First, there is a set of libraries for performing many types of computations needed
for molecular simulations: force evaluation, numerical integration, energy minimization, etc. These libraries provide
an interface targeted at developers of simulation software, allowing them to easily add simulation features to their
programs.

Second, there is an “application layer”, a set of Python libraries providing a high level interface for running simulations.
This layer is targeted at computational biologists or other people who want to run simulations, and who may or may
not be programmers.

The first part of this guide focused on the application layer and described how to run simulations with it. We now turn
to the lower level libraries. We will assume you are a programmer, that you are writing your own applications, and
that you want to add simulation features to those applications. The following chapters describe how to do that with
OpenMM.

7.1.1 How to get started

We have provided a number of files that make it easy to get started with OpenMM. Pre-compiled binaries are provided
for quickly getting OpenMM onto your computer (See Chapter 2.2 for set-up instructions). We recommend that you
then compile and run some of the tutorial examples, described in Chapter 9. These highlight key functions within
OpenMM and teach you the basic programming concepts for using OpenMM. Once you are ready to begin integrating
OpenMM into a specific software package, read through Chapter 12 to see how other software developers have done
this.

7.1.2 License

Two different licenses are used for different parts of OpenMM. The public API, the low level API, the reference
platform, the CPU platform, and the application layer are all distributed under the MIT license. This is a very
permissive license which allows them to be used in almost any way, requiring only that you retain the copyright
notice and disclaimer when distributing them.

The CUDA and OpenCL platforms are distributed under the GNU Lesser General Public License (LGPL). This also
allows you to use, modify, and distribute them in any way you want, but it requires you to also distribute the source
code for your modifications. This restriction applies only to modifications to OpenMM itself; you need not distribute
the source code to applications that use it.

OpenMM also uses several pieces of code that were written by other people and are covered by other licenses. All of
these licenses are similar in their terms to the MIT license, and do not significantly restrict how OpenMM can be used.

All of these licenses may be found in the “licenses” directory included with OpenMM.

50

OpenMM Users Guide, Release 7.3

7.2 Design Principles

The design of the OpenMM API is guided by the following principles.

1. The API must support efficient implementations on a variety of architectures.

The most important consequence of this goal is that the API cannot provide direct access to state information (particle
positions, velocities, etc.) at all times. On some architectures, accessing this information is expensive. With a GPU,
for example, it will be stored in video memory, and must be transferred to main memory before outside code can
access it. On a distributed architecture, it might not even be present on the local computer. OpenMM therefore only
allows state information to be accessed in bulk, with the understanding that doing so may be a slow operation.

2. The API should be easy to understand and easy to use.

This seems obvious, but it is worth stating as an explicit goal. We are creating OpenMM with the hope that many other
people will use it. To achieve that goal, it should be possible for someone to learn it without an enormous amount of
effort. An equally important aspect of being “easy to use” is being easy to use correctly. A well designed API should
minimize the opportunities for a programmer to make mistakes. For both of these reasons, clarity and simplicity are
essential.

3. It should be modular and extensible.

We cannot hope to provide every feature any user will ever want. For that reason, it is important that OpenMM be easy
to extend. If a user wants to add a new molecular force field, a new thermostat algorithm, or a new hardware platform,
the API should make that easy to do.

4. The API should be hardware independent.

Computer architectures are changing rapidly, and it is impossible to predict what hardware platforms might be
important to support in the future. One of the goals of OpenMM is to separate the API from the hardware. The
developers of a simulation application should be able to write their code once, and have it automatically take advantage
of any architecture that OpenMM supports, even architectures that do not yet exist when they write it.

7.3 Choice of Language

Molecular modeling and simulation tools are written in a variety of languages: C, C++, Fortran, Python, TCL, etc. It
is important that any of these tools be able to use OpenMM. There are two possible approaches to achieving this goal.

One option is to provide a separate version of the API for each language. These could be created by hand, or generated
automatically with a wrapper generator such as SWIG. This would require the API to use only “lowest common
denominator” features that can be reasonably supported in all languages. For example, an object oriented API would
not be an option, since it could not be cleanly expressed in C or Fortran.

The other option is to provide a single version of the API written in a single language. This would permit a cleaner,
simpler API, but also restrict the languages it could be directly called from. For example, a C++ API could not be
invoked directly from Fortran or Python.

We have chosen to use a hybrid of these two approaches. OpenMM is based on an object oriented C++ API. This is
the primary way to invoke OpenMM, and is the only API that fully exposes all features of the library. We believe this
will ultimately produce the best, easiest to use API and create the least work for developers who use it. It does require
that any code which directly invokes this API must itself be written in C++, but this should not be a significant burden.
Regardless of what language we had chosen, developers would need to write a thin layer for translating between their
own application’s data model and OpenMM. That layer is the only part which needs to be written in C++.

In addition, we have created wrapper APIs that allow OpenMM to be invoked from other languages. The current
release includes wrappers for C, Fortran, and Python. These wrappers support as many features as reasonably possible
given the constraints of the particular languages, but some features cannot be fully supported. In particular, writing
plug-ins to extend the OpenMM API can only be done in C++.

7.2. Design Principles 51

OpenMM Users Guide, Release 7.3

We are also aware that some features of C++ can easily lead to compatibility and portability problems, and we have
tried to avoid those features. In particular, we make minimal use of templates and avoid multiple inheritance altogether.
Our goal is to support OpenMM on all major compilers and operating systems.

7.4 Architectural Overview

OpenMM is based on a layered architecture, as shown in the following diagram:

Figure 7-1: OpenMM architecture

At the highest level is the OpenMM public API. This is the API developers program against when using OpenMM
within their own applications. It is designed to be simple, easy to understand, and completely platform independent.
This is the only layer that many users will ever need to look at.

The public API is implemented by a layer of platform independent code. It serves as the interface to the lower level,
platform specific code. Most users will never need to look at it.

The next level down is the OpenMM Low Level API (OLLA). This acts as an abstraction layer to hide the details of
each hardware platform. It consists of a set of C++ interfaces that each platform must implement. Users who want to
extend OpenMM will need to write classes at the OLLA level. Note the different roles played by the public API and
the low level API: the public API defines an interface for users to invoke in their own code, while OLLA defines an
interface that users must implement, and that is invoked by the OpenMM implementation layer.

52 Chapter 7. The OpenMM Library: Introduction

OpenMM Users Guide, Release 7.3

At the lowest level is hardware specific code that actually performs computations. This code may be written in
any language and use any technologies that are appropriate. For example, code for GPUs will be written in stream
processing languages such as OpenCL or CUDA, code written to run on clusters will use MPI or other distributed
computing tools, code written for multicore processors will use threading tools such as Pthreads or OpenMP, etc.
OpenMM sets no restrictions on how these computational kernels are written. As long as they are wrapped in the
appropriate OLLA interfaces, OpenMM can use them.

7.5 The OpenMM Public API

The public API is based on a small number of classes:

System: A System specifies generic properties of the system to be simulated: the number of particles it contains, the
mass of each one, the size of the periodic box, etc. The interactions between the particles are specified through a set
of Force objects (see below) that are added to the System. Force field specific parameters, such as particle charges, are
not direct properties of the System. They are properties of the Force objects contained within the System.

Force: The Force objects added to a System define the behavior of the particles. Force is an abstract class; subclasses
implement specific behaviors. The Force class is actually slightly more general than its name suggests. A Force can,
indeed, apply forces to particles, but it can also directly modify particle positions and velocities in arbitrary ways.
Some thermostats and barostats, for example, can be implemented as Force classes. Examples of Force subclasses
include HarmonicBondForce, NonbondedForce, and MonteCarloBarostat.

Context: This stores all of the state information for a simulation: particle positions and velocities, as well as arbitrary
parameters defined by the Forces in the System. It is possible to create multiple Contexts for a single System, and thus
have multiple simulations of that System in progress at the same time.

Integrator: This implements an algorithm for advancing the simulation through time. It is an abstract class; subclasses
implement specific algorithms. Examples of Integrator subclasses include LangevinIntegrator, VerletIntegrator, and
BrownianIntegrator.

State: A State stores a snapshot of the simulation at a particular point in time. It is created by calling a method on
a Context. As discussed earlier, this is a potentially expensive operation. This is the only way to query the values of
state variables, such as particle positions and velocities; Context does not provide methods for accessing them directly.

Here is an example of what the source code to create a System and run a simulation might look like:

System system;
for (int i = 0; i < numParticles; ++i)

system.addParticle(particle[i].mass);
HarmonicBondForce* bonds = new HarmonicBondForce();
system.addForce(bonds);
for (int i = 0; i < numBonds; ++i)

bonds->addBond(bond[i].particle1, bond[i].particle2,
bond[i].length, bond[i].k);

HarmonicAngleForce* angles = new HarmonicAngleForce();
system.addForce(angles);
for (int i = 0; i < numAngles; ++i)

angles->addAngle(angle[i].particle1, angle[i].particle2,
angle[i].particle3, angle[i].angle, angle[i].k);

// ...create and initialize other force field terms in the same way
LangevinIntegrator integrator(temperature, friction, stepSize);
Context context(system, integrator);
context.setPositions(initialPositions);
context.setVelocities(initialVelocities);
integrator.step(10000);

7.5. The OpenMM Public API 53

OpenMM Users Guide, Release 7.3

We create a System, add various Forces to it, and set parameters on both the System and the Forces. We then create
a LangevinIntegrator, initialize a Context in which to run a simulation, and instruct the Integrator to advance the
simulation for 10,000 time steps.

7.6 The OpenMM Low Level API

The OpenMM Low Level API (OLLA) defines a set of interfaces that users must implement in their own code if they
want to extend OpenMM, such as to create a new Force subclass or support a new hardware platform. It is based on
the concept of “kernels” that define particular computations to be performed.

More specifically, there is an abstract class called KernelImpl. Instances of this class (or rather, of its subclasses)
are created by KernelFactory objects. These classes provide the concrete implementations of kernels for a particular
platform. For example, to perform calculations on a GPU, one would create one or more KernelImpl subclasses
that implemented the computations with GPU kernels, and one or more KernelFactory subclasses to instantiate the
KernelImpl objects.

All of these objects are encapsulated in a single object that extends Platform. KernelFactory objects are registered
with the Platform to be used for creating specific named kernels. The choice of what implementation to use (a
GPU implementation, a multithreaded CPU implementation, an MPI-based distributed implementation, etc.) consists
entirely of choosing what Platform to use.

As discussed so far, the low level API is not in any way specific to molecular simulation; it is a fairly generic
computational API. In addition to defining the generic classes, OpenMM also defines abstract subclasses of KernelImpl
corresponding to specific calculations. For example, there is a class called CalcHarmonicBondForceKernel to
implement HarmonicBondForce and a class called IntegrateLangevinStepKernel to implement LangevinIntegrator.
It is these classes for which each Platform must provide a concrete subclass.

This architecture is designed to allow easy extensibility. To support a new hardware platform, for example, you create
concrete subclasses of all the abstract kernel classes, then create appropriate factories and a Platform subclass to bind
everything together. Any program that uses OpenMM can then use your implementation simply by specifying your
Platform subclass as the platform to use.

Alternatively, you might want to create a new Force subclass to implement a new type of interaction. To do this, define
an abstract KernelImpl subclass corresponding to the new force, then write the Force class to use it. Any Platform
can support the new Force by providing a concrete implementation of your KernelImpl subclass. Furthermore, you
can easily provide that implementation yourself, even for existing Platforms created by other people. Simply create a
new KernelFactory subclass for your kernel and register it with the Platform object. The goal is to have a completely
modular system. Each module, which might be distributed as an independent library, can either add new features to
existing platforms or support existing features on new platforms.

In fact, there is nothing “special” about the kernel classes defined by OpenMM. They are simply KernelImpl subclasses
that happen to be used by Forces and Integrators that happen to be bundled with OpenMM. They are treated exactly
like any other KernelImpl, including the ones you define yourself.

It is important to understand that OLLA defines an interface, not an implementation. It would be easy to assume a
one-to-one correspondence between KernelImpl objects and the pieces of code that actually perform calculations, but
that need not be the case. For a GPU implementation, for example, a single KernelImpl might invoke several GPU
kernels. Alternatively, a single GPU kernel might perform the calculations of several KernelImpl subclasses.

7.7 Platforms

This release of OpenMM contains the following Platform subclasses:

ReferencePlatform: This is designed to serve as reference code for writing other platforms. It is written with
simplicity and clarity in mind, not performance.

54 Chapter 7. The OpenMM Library: Introduction

OpenMM Users Guide, Release 7.3

CpuPlatform: This platform provides high performance when running on conventional CPUs.

CudaPlatform: This platform is implemented using the CUDA language, and performs calculations on Nvidia GPUs.

OpenCLPlatform: This platform is implemented using the OpenCL language, and performs calculations on a variety
of types of GPUs and CPUs.

The choice of which platform to use for a simulation depends on various factors:

1. The Reference platform is much slower than the others, and therefore is rarely used for production simulations.

2. The CPU platform is usually the fastest choice when a fast GPU is not available. However, it requires the CPU to
support SSE 4.1. That includes most CPUs made in the last several years, but this platform may not be available
on some older computers. Also, for simulations that use certain features (primarily the various “custom” force
classes), it may be faster to use the OpenCL platform running on the CPU.

3. The CUDA platform can only be used with NVIDIA GPUs. For using an AMD or Intel GPU, use the OpenCL
platform.

4. The AMOEBA force field only works with the CUDA platform, not with the OpenCL platform. It also works
with the Reference and CPU platforms, but the performance is usually too slow to be useful on those platforms.

7.7. Platforms 55

CHAPTER

EIGHT

COMPILING OPENMM FROM SOURCE CODE

This chapter describes the procedure for building and installing OpenMM libraries from source code. It is
recommended that you use binary OpenMM libraries, if possible. If there are not suitable binary libraries for your
system, consider building OpenMM from source code by following these instructions.

8.1 Prerequisites

Before building OpenMM from source, you will need the following:

• A C++ compiler

• CMake

• OpenMM source code

See the sections below for specific instructions for the different platforms.

8.1.1 Get a C++ compiler

You must have a C++ compiler installed before attempting to build OpenMM from source.

8.1.1.1 Mac and Linux: clang or gcc

Use clang or gcc on Mac/Linux. OpenMM should compile correctly with all recent versions of these compilers. We
recommend clang since it produces faster code, especially when using the CPU platform. If you do not already have a
compiler installed, you will need to download and install it. On Mac OS X, this means downloading the Xcode Tools
from the App Store.

8.1.1.2 Windows: Visual Studio

On Windows systems, use the C++ compiler in Visual Studio 2015 or later. You can download a free version of
the Visual Studio C++ build tools from http://landinghub.visualstudio.com/visual-cpp-build-tools. If you plan to use
OpenMM from Python, it is critical that both OpenMM and Python be compiled with the same version of Visual
Studio.

56

http://landinghub.visualstudio.com/visual-cpp-build-tools

OpenMM Users Guide, Release 7.3

8.1.2 Install CMake

CMake is the build system used for OpenMM. You must install CMake version 3.1 or higher before attempting to build
OpenMM from source. You can get CMake from http://www.cmake.org/. If you choose to build CMake from source
on Linux, make sure you have the curses library installed beforehand, so that you will be able to build the CCMake
visual CMake tool.

8.1.3 Get the OpenMM source code

You will also need the OpenMM source code before building OpenMM from source. To download and unpack
OpenMM source code:

1. Browse to https://simtk.org/home/openmm.

2. Click the “Downloads” link in the navigation bar on the left side.

3. Download OpenMM<Version>-Source.zip, choosing the latest version.

4. Unpack the zip file. Note the location where you unpacked the OpenMM source code.

Alternatively, if you want the most recent development version of the code rather than the version corresponding to a
particular release, you can get it from https://github.com/pandegroup/openmm. Be aware that the development code
is constantly changing, may contain bugs, and should never be used for production work. If you want a stable, well
tested version of OpenMM, you should download the source code for the latest release as described above.

8.1.4 Other Required Software

There are several other pieces of software you must install to compile certain parts of OpenMM. Which of these you
need depends on the options you select in CMake.

• For compiling the CUDA Platform, you need:

– CUDA (See Chapter 2.2 for installation instructions.)

• For compiling the OpenCL Platform, you need:

– OpenCL (See Chapter 2.2 for installation instructions.)

• For compiling C and Fortran API wrappers, you need:

– Python 2.7 or later (http://www.python.org)

– Doxygen (http://www.doxygen.org)

– A Fortran compiler

• For compiling the Python API wrappers, you need:

– Python 2.7 or later (http://www.python.org)

– SWIG (http://www.swig.org)

– Doxygen (http://www.doxygen.org)

• For compiling the CPU platform, you need:

– FFTW, single precision multithreaded version (http://www.fftw.org)

• To generate API documentation, you need:

– Doxygen (http://www.doxygen.org)

8.1. Prerequisites 57

http://www.cmake.org/
https://simtk.org/home/openmm
https://github.com/pandegroup/openmm
http://www.python.org
http://www.doxygen.org
http://www.python.org
http://www.swig.org
http://www.doxygen.org
http://www.fftw.org
http://www.doxygen.org

OpenMM Users Guide, Release 7.3

8.2 Step 1: Configure with CMake

8.2.1 Build and source directories

First, create a directory in which to build OpenMM. A good name for this directory is build_openmm. We will refer
to this as the “build_openmm directory” in the instructions below. This directory will contain the temporary files used
by the OpenMM CMake build system. Do not create this build directory within the OpenMM source code directory.
This is what is called an “out of source” build, because the build files will not be mixed with the source files.

Also note the location of the OpenMM source directory (i.e., where you unpacked the source code zip file). It should
contain a file called CMakeLists.txt. This directory is what we will call the “OpenMM source directory” in the
following instructions.

8.2.2 Starting CMake

Configuration is the first step of the CMake build process. In the configuration step, the values of important build
variables will be established.

8.2.2.1 Mac and Linux

On Mac and Linux machines, type the following two lines:

cd build_openmm
ccmake -i <path to OpenMM src directory>

That is not a typo. ccmake has two c’s. CCMake is the visual CMake configuration tool. Press “c” within the CCMake
interface to configure CMake. Follow the instructions in the “All Platforms” section below.

8.2.2.2 Windows

On Windows, perform the following steps:

1. Click Start->All Programs->CMake 3.1->CMake

2. In the box labeled “Where is the source code:” browse to OpenMM src directory (containing top
CMakeLists.txt)

3. In the box labeled “Where to build the binaries” browse to your build_openmm directory.

4. Click the “Configure” button at the bottom of the CMake screen.

5. Select “Visual Studio 10 2010” from the list of Generators (or whichever version you have installed)

6. Follow the instructions in the “All Platforms” section below.

8.2.2.3 All platforms

There are several variables that can be adjusted in the CMake interface:

• If you intend to use CUDA (NVIDIA) or OpenCL acceleration, set the variable
OPENMM_BUILD_CUDA_LIB or OPENMM_BUILD_OPENCL_LIB, respectively, to ON. Before doing so,
be certain that you have installed and tested the drivers for the platform you have selected (see Chapter 2.2 for
information on installing GPU software).

58 Chapter 8. Compiling OpenMM from Source Code

OpenMM Users Guide, Release 7.3

• There are lots of other options starting with OPENMM_BUILD that control whether to build particular features
of OpenMM, such as plugins, API wrappers, and documentation.

• Set the variable CMAKE_INSTALL_PREFIX to the location where you want to install OpenMM.

• Set the variable PYTHON_EXECUTABLE to the Python interpreter you plan to use OpenMM with.

Configure (press “c”) again. Adjust any variables that cause an error.

Continue to configure (press “c”) until no starred/red CMake variables are displayed. Congratulations, you have
completed the configuration step.

8.3 Step 2: Generate Build Files with CMake

Once the configuration is done, the next step is generation. The generate “g” or “OK” or “Generate” option will not
be available until configuration has completely converged.

8.3.1 Windows

• Press the “OK” or “Generate” button to generate Visual Studio project files.

• If CMake does not exit automatically, press the close button in the upper- right corner of the CMake title bar to
exit.

8.3.2 Mac and Linux

• Press “g” to generate the Makefile.

• If CMake does not exit automatically, press “q” to exit.

That’s it! Generation is the easy part. Now it’s time to build.

8.4 Step 3: Build OpenMM

8.4.1 Windows

1. Open the file OpenMM.sln in your openmm_build directory in Visual Studio.

2. Set the configuration type to “Release” (not “Debug”) in the toolbar.

3. From the Build menu, click Build->Build Solution

4. The OpenMM libraries and test programs will be created. This takes some time.

5. The test program TestCudaRandom might not build on Windows. This is OK.

8.4.2 Mac and Linux

• Type make in the openmm_build directory.

The OpenMM libraries and test programs will be created. This takes some time.

8.3. Step 2: Generate Build Files with CMake 59

OpenMM Users Guide, Release 7.3

8.5 Step 4: Install OpenMM

8.5.1 Windows

In the Solution Explorer Panel, far-click/right-click INSTALL->build.

8.5.2 Mac and Linux

Type:

make install

If you are installing to a system area, such as /usr/local/openmm/, you will need to type:

sudo make install

8.6 Step 5: Install the Python API

8.6.1 Windows

In the Solution Explorer Panel, right-click PythonInstall->build.

8.6.2 Mac and Linux

Type:

make PythonInstall

If you are installing into the system Python, such as /usr/bin/python, you will need to type:

sudo make PythonInstall

8.7 Step 6: Test your build

After OpenMM has been built, you should run the unit tests to make sure it works.

8.7.1 Windows

In Visual Studio, far-click/right-click RUN_TESTS in the Solution Explorer Panel. Select RUN_TESTS->build to
begin testing. Ignore any failures for TestCudaRandom.

8.7.2 Mac and Linux

Type:

60 Chapter 8. Compiling OpenMM from Source Code

OpenMM Users Guide, Release 7.3

make test

You should see a series of test results like this:

Start 1: TestReferenceAndersenThermostat
1/317 Test #1: TestReferenceAndersenThermostat Passed 0.26 sec

Start 2: TestReferenceBrownianIntegrator
2/317 Test #2: TestReferenceBrownianIntegrator Passed 0.13 sec

Start 3: TestReferenceCheckpoints
3/317 Test #3: TestReferenceCheckpoints Passed 0.02 sec
... <many other tests> ...

Passed is good. FAILED is bad. If any tests fail, you can run them individually to get more detailed error information.
Note that some tests are stochastic, and therefore are expected to fail a small fraction of the time. These tests will say
so in the error message:

./TestReferenceLangevinIntegrator

exception: Assertion failure at TestReferenceLangevinIntegrator.cpp:129. Expected 9.
↪→97741,

found 10.7884 (This test is stochastic and may occasionally fail)

Congratulations! You successfully have built and installed OpenMM from source.

8.8 Building the Documentation (Optional)

The documentation that you’re currently reading, as well as the developer guide and API documentation can be built
through CMake by setting the OpenMM option OPENMM_GENERATE_API_DOCS=ON.

8.8.1 User Guide and Developer Guide

Generating the user guide and developer guide requires the following dependencies

• Sphinx (http://sphinx-doc.org/)

• sphinxcontrib-bibtex (https://pypi.python.org/pypi/sphinxcontrib-bibtex)

These dependencies may not be available in your system package manager, but should be installable through Python’s
pip package manager.

pip install sphinx sphinxcontrib-bibtex

The developer and user guides can be built either as HTML or a PDFs. Building the PDF version will also require a
functional LaTeX installation.

To build the HTML version of the documentation, type:

make sphinxhtml

To build the PDF version of the documentation, type:

make sphinxpdf

8.8. Building the Documentation (Optional) 61

http://sphinx-doc.org/
https://pypi.python.org/pypi/sphinxcontrib-bibtex

OpenMM Users Guide, Release 7.3

8.8.2 Python and C++ API Documentation

The following dependencies are required to build the Python and C++ API documentation.

• Sphinx (http://sphinx-doc.org/)

• sphinxcontrib-lunrsearch (https://pypi.python.org/pypi/sphinxcontrib-lunrsearch)

• sphinxcontrib-autodoc_doxygen (https://pypi.python.org/pypi/sphinxcontrib-autodoc_doxygen)

These dependencies may not be available in your system package manager, but should be installable through Python’s
pip package manager.

pip install sphinx sphinxcontrib-lunrsearch sphinxcontrib-autodoc_doxygen

To build the C++ API documentation, type:

make C++ApiDocs

To build the Python API documentation, type:

make PythonApiDocs

62 Chapter 8. Compiling OpenMM from Source Code

http://sphinx-doc.org/
https://pypi.python.org/pypi/sphinxcontrib-lunrsearch
https://pypi.python.org/pypi/sphinxcontrib-autodoc_doxygen

CHAPTER

NINE

OPENMM TUTORIALS

9.1 Example Files Overview

Four example files are provided in the examples folder, each designed with a specific objective.

• HelloArgon: A very simple example intended for verifying that you have installed OpenMM correctly. It also
introduces you to the basic classes within OpenMM.

• HelloSodiumChloride: This example shows you our recommended strategy for integrating OpenMM into an
existing molecular dynamics code.

• HelloEthane: The main purpose of this example is to demonstrate how to tell OpenMM about bonded forces
(bond stretch, bond angle bend, dihedral torsion).

• HelloWaterBox: This example shows you how to use OpenMM to model explicit solvation, including setting
up periodic boundary conditions. It runs extremely fast on a GPU but very, very slowly on a CPU, so it is an
excellent example to use to compare performance on the GPU versus the CPU. The other examples provided
use systems where the performance difference would be too small to notice.

The two fundamental examples—HelloArgon and HelloSodiumChloride—are provided in C++, C, and Fortran, as
indicated in the table below. The other two examples—HelloEthane and HelloWaterBox—follow the same structure
as HelloSodiumChloride but demonstrate more calls within the OpenMM API. They are only provided in C++
but can be adapted to run in C and Fortran by following the mappings described in Chapter 11. HelloArgon
and HelloSodiumChloride also serve as examples of how to do these mappings. The sections below describe the
HelloArgon, HelloSodiumChloride, and HelloEthane programs in more detail.

Example Solvent Thermostat Boundary Forces & Constraints API
Argon Vacuum None None Non-bonded* C++, C,

Fortran
Sodium
Chloride

Implicit
water

Langevin None Non-bonded* C++, C,
Fortran

Ethane Vacuum None None Non-bonded*, stretch, bend,
torsion

C++

Water Box Explicit
water

Andersen Periodic Non-bonded*, stretch, bend,
constraints

C++

*van der Waals and Coulomb forces

9.2 Running Example Files

The instructions below are for running the HelloArgon program. A similar process would be used to run the other
examples.

63

OpenMM Users Guide, Release 7.3

9.2.1 Visual Studio

Navigate to wherever you saved the example files. Descend into the directory folder VisualStudio. Double-click the
file HelloArgon.sln (a Microsoft Visual Studio Solution file). Visual Studio will launch.

Note: These files were created using Visual Studio 8. If you are using a more recent version, it will ask if you want to
convert the files to the new version. Agree and continue through the conversion process.

In Visual Studio, make sure the “Solution Configuration” is set to “Release” and not “Debug”. The “Solution
Configuration” can be set using the drop-down menu in the top toolbar, next to the green arrow (see Figure 9-1
below). Due to incompatibilities among Visual Studio versions, we do not provide pre-compiled debug binaries.

Figure 9-1: Setting “Solution Configuration” to “Release” mode in Visual Studio

From the command options select Debug -> Start Without Debugging (or CTRL-F5). See Figure 9-2. This will also
compile the program, if it has not previously been compiled.

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference
MODEL 1
ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00
ENDMDL

...

MODEL 250
ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00
ENDMDL
MODEL 251
ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00
ENDMDL
MODEL 252
ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00
ENDMDL

64 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

Figure 9-2: Run a program in Visual Studio

9.2. Running Example Files 65

OpenMM Users Guide, Release 7.3

9.2.1.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference platform) or a GPU
(CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference
REMARK Using OpenMM platform Cuda
REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

9.2.1.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD (http://www.ks.uiuc.edu/
Research/vmd/) or PyMol (http://pymol.sourceforge.net/). To do this within Visual Studios:

1. Right-click on the project name HelloArgon (not one of the files) and select the “Properties” option.

2. On the “Property Pages” form, select “Debugging” under the “Configuration Properties” node.

3. In the “Command Arguments” field, type:

> argon.pdb

This will save the output to a file called argon.pdb in the current working directory (default is the VisualStudio
directory). If you want to save it to another directory, you will need to specify the full path.

4. Select “OK”

Now, when you run the program in Visual Studio, no text will appear. After a short time, you should see the
message “Press any key to continue...,” indicating that the program is complete and that the PDB file has
been completely written.

9.2.2 Mac OS X/Linux

Navigate to wherever you saved the example files.

Verify your makefile by consulting the MakefileNotes file in this directory, if necessary.

Type::

make

Then run the program by typing:

./HelloArgon

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference
MODEL 1
ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00
ENDMDL

...

66 Chapter 9. OpenMM Tutorials

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://pymol.sourceforge.net/

OpenMM Users Guide, Release 7.3

MODEL 250
ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00
ENDMDL
MODEL 251
ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00
ENDMDL
MODEL 252
ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00
ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00
ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00
ENDMDL

9.2.2.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference platform) or a GPU
(CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference
REMARK Using OpenMM platform Cuda
REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

9.2.2.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD (http://www.ks.uiuc.edu/
Research/vmd/) or PyMol (http://pymol.sourceforge.net/) by typing:

./HelloArgon > argon.pdb

9.2.2.3 Compiling Fortran and C examples

The Makefile provided with the examples can also be used to compile the Fortran and C examples.

The Fortran compiler needs to load a version of the libstdc++.dylib library that is compatible with the version of gcc
used to build OpenMM; OpenMM for Mac is compiled using gcc 4.2. If you are compiling with a different version,
edit the Makefile and add the following flag to FCPPLIBS: -L/usr/lib/gcc/i686 -apple-darwin10/4.2.1.

When the Makefile has been updated, type:

make all

9.3 HelloArgon Program

The HelloArgon program simulates three argon atoms in a vacuum. It is a simple program primarily intended for you
to verify that you are able to compile, link, and run with OpenMM. It also demonstrates the basic calls needed to run
a simulation using OpenMM.

9.3. HelloArgon Program 67

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://pymol.sourceforge.net/

OpenMM Users Guide, Release 7.3

9.3.1 Including OpenMM-defined functions

The OpenMM header file OpenMM.h instructs the program to include everything defined by the OpenMM libraries.
Include the header file by adding the following line at the top of your program:

#include "OpenMM.h"

9.3.2 Running a program on GPU platforms

By default, a program will run on the Reference platform. In order to run a program on another platform (e.g., an
NVIDIA or AMD GPU), you need to load the required shared libraries for that other platform (e.g., Cuda, OpenCL).
The easy way to do this is to call:

OpenMM::Platform::loadPluginsFromDirectory(OpenMM::Platform::getDefaultPluginsDirectory());
↪→

This will load all the shared libraries (plug-ins) that can be found, so you do not need to explicitly know which libraries
are available on a given machine. In this way, the program will be able to run on another platform, if it is available.

9.3.3 Running a simulation using the OpenMM public API

The OpenMM public API was described in Section 7.5. Here you will see how to use those classes to create a simple
system of three argon atoms and run a short simulation. The main components of the simulation are within the function
simulateArgon():

1. System – We first establish a system and add a non-bonded force to it. At this point, there are no particles in the
system.

// Create a system with nonbonded forces.
OpenMM::System system;
OpenMM::NonbondedForce* nonbond = new OpenMM::NonbondedForce();
system.addForce(nonbond);

We then add the three argon atoms to the system. For this system, all the data for the particles are
hard-coded into the program. While not a realistic scenario, it makes the example simpler and clearer. The
std::vector<OpenMM::Vec3> is an array of vectors of 3.

// Create three atoms.
std::vector<OpenMM::Vec3> initPosInNm(3);
for (int a = 0; a < 3; ++a)
{

initPosInNm[a] = OpenMM::Vec3(0.5*a,0,0); // location, nm

system.addParticle(39.95); // mass of Ar, grams per mole

// charge, L-J sigma (nm), well depth (kJ)
nonbond->addParticle(0.0, 0.3350, 0.996); // vdWRad(Ar)=.188 nm

}

Units: Be very careful with the units in your program. It is very easy to make mistakes with the units,
so we recommend including them in your variable names, as we have done here initPosInNm (position in
nanometers). OpenMM provides conversion constants that should be used whenever there are conversions to
be done; for simplicity, we did not do that in HelloArgon, but all the other examples show the use of these
constants.

68 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

It is hard to overemphasize the importance of careful units handling—it is very easy to make a mistake despite,
or perhaps because of, the trivial nature of units conversion. For more information about the units used in
OpenMM, see Section 17.2.

Adding Particle Information: Both the system and the non-bonded force require information about the
particles. The system just needs to know the mass of the particle. The non-bonded force requires information
about the charge (in this case, argon is uncharged), and the Lennard-Jones parameters sigma (zero-energy
separation distance) and well depth (see Section 18.6.1 for more details).

Note that the van der Waals radius for argon is 0.188 nm and that it has already been converted to sigma (0.335
nm) in the example above where it is added to the non-bonded force; in your code, you should make use of the
appropriate conversion factor supplied with OpenMM as discussed in Section 17.2.

2. Integrator – We next specify the integrator to use to perform the calculations. In this case, we choose a Verlet
integrator to run a constant energy simulation. The only argument required is the step size in picoseconds.

OpenMM::VerletIntegrator integrator(0.004); // step size in ps

We have chosen to use 0.004 picoseconds, or 4 femtoseconds, which is larger than that used in a typical
molecular dynamics simulation. However, since this example does not have any bonds with higher frequency
components, like most molecular dynamics simulations do, this is an acceptable value.

3. Context – The context is an object that consists of an integrator and a system. It manages the state of the
simulation. The code below initializes the context. We then let the context select the best platform available
to run on, since this is not specifically specified, and print out the chosen platform. This is useful information,
especially when debugging.

// Let OpenMM Context choose best platform.
OpenMM::Context context(system, integrator);
printf("REMARK Using OpenMM platform %s\n", context.getPlatform().getName().c_
↪→str());

We then initialize the system, setting the initial time, as well as the initial positions and velocities of the atoms.
In this example, we leave time and velocity at their default values of zero.

// Set starting positions of the atoms. Leave time and velocity zero.
context.setPositions(initPosInNm);

4. Initialize and run the simulation – The next block of code runs the simulation and saves its output. For each
frame of the simulation (in this example, a frame is defined by the advancement interval of the integrator; see
below), the current state of the simulation is obtained and written out to a PDB-formatted file.

// Simulate.
for (int frameNum=1; ;++frameNum) {

// Output current state information.
OpenMM::State state = context.getState(OpenMM::State::Positions);
const double timeInPs = state.getTime();
writePdbFrame(frameNum, state); // output coordinates

Getting state information has to be done in bulk, asking for information for all the particles at once. This is
computationally expensive since this information can reside on the GPUs and requires communication overhead
to retrieve, so you do not want to do it very often. In the above code, we only request the positions, since that is
all that is needed, and time from the state.

The simulation stops after 10 ps; otherwise we ask the integrator to take 10 steps (so one frame is equivalent to
10 time steps). Normally, we would want to take more than 10 steps at a time, but to get a reasonable-looking
animation, we use 10.

9.3. HelloArgon Program 69

OpenMM Users Guide, Release 7.3

if (timeInPs >= 10.)
break;

// Advance state many steps at a time, for efficient use of OpenMM.
integrator.step(10); // (use a lot more than this normally)

9.3.4 Error handling for OpenMM

Error handling for OpenMM is explicitly designed so you do not have to check the status after every call. If anything
goes wrong, OpenMM throws an exception. It uses standard exceptions, so on many platforms, you will get the
exception message automatically. However, we recommend using try-catch blocks to ensure you do catch the
exception.

int main()
{

try {
simulateArgon();
return 0; // success!

}
// Catch and report usage and runtime errors detected by OpenMM and fail.
catch(const std::exception& e) {

printf("EXCEPTION: %s\n", e.what());
return 1; // failure!

}
}

9.3.5 Writing out PDB files

For the HelloArgon program, we provide a simple PDB file writing function writePdbFrame that only writes out
argon atoms. The function has nothing to do with OpenMM except for using the OpenMM State. The function extracts
the positions from the State in nanometers (10-9 m) and converts them to Angstroms (10-10 m) to be compatible with
the PDB format. Again, we emphasize how important it is to track the units being used!

void writePdbFrame(int frameNum, const OpenMM::State& state)
{

// Reference atomic positions in the OpenMM State.
const std::vector<OpenMM::Vec3>& posInNm = state.getPositions();

// Use PDB MODEL cards to number trajectory frames
printf("MODEL %d\n", frameNum); // start of frame
for (int a = 0; a < (int)posInNm.size(); ++a)
{

printf("ATOM %5d AR AR 1 ", a+1); // atom number
printf("%8.3f%8.3f%8.3f 1.00 0.00\n", // coordinates
// "*10" converts nanometers to Angstroms
posInNm[a][0]*10, posInNm[a][1]*10, posInNm[a][2]*10);

}
printf("ENDMDL\n"); // end of frame

}

MODEL and ENDMDL are used to mark the beginning and end of a frame, respectively. By including multiple frames in
a PDB file, you can visualize the simulation trajectory.

70 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

9.3.6 HelloArgon output

The output of the HelloArgon program can be saved to a .pdb file and visualized using programs like VMD or PyMol
(see Section 9.2). You should see three atoms moving linearly away and towards one another:

You may need to adjust the van der Waals radius in your visualization program to see the atoms colliding.

9.4 HelloSodiumChloride Program

The HelloSodiumChloride models several sodium (Na+) and chloride (Cl-) ions in implicit solvent (using a Generalized
Born/Surface Area, or GBSA, OBC model). As with the HelloArgon program, only non-bonded forces are simulated.

The main purpose of this example is to illustrate our recommended strategy for integrating OpenMM into an existing
molecular dynamics (MD) code:

1. Write a few, high-level interface routines containing all your OpenMM calls: Rather than make OpenMM
calls throughout your program, we recommend writing a handful of interface routines that understand both your
MD code’s data structures and OpenMM. Organize these routines into a separate compilation unit so you do not
have to make huge changes to your existing MD code. These routines could be written in any language that is
callable from the existing MD code. We recommend writing them in C++ since that is what OpenMM is written
in, but you can also write them in C or Fortran; see Chapter 11.

2. Call only these high-level interface routines from your existing MD code: This provides a clean separation
between the existing MD code and OpenMM, so that changes to OpenMM will not directly impact the existing
MD code. One way to implement this is to use opaque handles, a standard trick used (for example) for opening
files in Linux. An existing MD code can communicate with OpenMM via the handle, but knows none of the
details of the handle. It only has to hold on to the handle and give it back to OpenMM.

In the example described below, you will see how this strategy can be implemented for a very simple MD code.
Chapter 12 describes the strategies used in integrating OpenMM into real MD codes.

9.4.1 Simple molecular dynamics system

The initial sections of HelloSodiumChloride.cpp represent a very simple molecular dynamics system. The system
includes modeling and simulation parameters and the atom and force field data. It also provides a data structure
posInAng[3] for storing the current state. These sections represent (in highly simplified form) information that
would be available from an existing MD code, and will be used to demonstrate how to integrate OpenMM with an
existing MD program.

// ---
// MODELING AND SIMULATION PARAMETERS
// ---
static const double Temperature = 300; // Kelvins
static const double FrictionInPerPs = 91.; // collisions per picosecond
static const double SolventDielectric = 80.; // typical for water

9.4. HelloSodiumChloride Program 71

OpenMM Users Guide, Release 7.3

static const double SoluteDielectric = 2.; // typical for protein

static const double StepSizeInFs = 2; // integration step size (fs)
static const double ReportIntervalInFs = 50; // how often to issue PDB frame
↪→(fs)
static const double SimulationTimeInPs = 100; // total simulation time (ps)

// Decide whether to request energy calculations.
static const bool WantEnergy = true;

// ---
// ATOM AND FORCE FIELD DATA
// ---
// This is not part of OpenMM; just a struct we can use to collect atom
// parameters for this example. Normally atom parameters would come from the
// force field's parameterization file. We're going to use data in Angstrom and
// Kilocalorie units and show how to safely convert to OpenMM's internal unit
// system which uses nanometers and kilojoules.
static struct MyAtomInfo {

const char* pdb;
double mass, charge, vdwRadiusInAng, vdwEnergyInKcal,

gbsaRadiusInAng, gbsaScaleFactor;
double initPosInAng[3];
double posInAng[3]; // leave room for runtime state info

} atoms[] = {
// pdb mass charge vdwRad vdwEnergy gbsaRad gbsaScale initPos
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 8, 0, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, -8, 0, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 9, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0,-9, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 0,-10},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0, 0, 10},
{""} // end of list
};

9.4.2 Interface routines

The key to our recommended integration strategy is the interface routines. You will need to decide what interface
routines are required for effective communication between your existing MD program and OpenMM, but typically
there will only be six or seven. In our example, the following four routines suffice:

• Initialize: Data structures that already exist in your MD program (i.e., force fields, constraints, atoms in the
system) are passed to the Initialize routine, which makes appropriate calls to OpenMM and then returns a
handle to the OpenMM object that can be used by the existing MD program.

• Terminate: Clean up the heap space allocated by Initialize by passing the handle to the Terminate routine.

• Advance State: The AdvanceState routine advances the simulation. It requires that the calling function, the
existing MD code, gives it a handle.

• Retrieve State: When you want to do an analysis or generate some kind of report, you call the RetrieveState
routine. You have to give it a handle. It then fills in a data structure that is defined in the existing MD code,
allowing the MD program to use it in its existing routines without further modification.

Note that these are just descriptions of the routines’ functions—you can call them anything you like and implement
them in whatever way makes sense for your MD code.

72 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

In the example code, the four routines performing these functions, plus an opaque data structure (the handle), would
be declared, as shown below. Then, the main program, which sets up, runs, and reports on the simulation, accesses
these routines and the opaque data structure (in this case, the variable omm). As you can see, it does not have access
to any OpenMM declarations, only to the interface routines that you write so there is no need to change the build
environment.

struct MyOpenMMData;
static MyOpenMMData* myInitializeOpenMM(const MyAtomInfo atoms[],

double temperature,
double frictionInPs,
double solventDielectric,
double soluteDielectric,
double stepSizeInFs,
std::string& platformName);

static void myStepWithOpenMM(MyOpenMMData*, int numSteps);
static void myGetOpenMMState(MyOpenMMData*,

bool wantEnergy,
double& time,
double& energy,
MyAtomInfo atoms[]);

static void myTerminateOpenMM(MyOpenMMData*);

// ---
// MAIN PROGRAM
// ---
int main() {

const int NumReports = (int)(SimulationTimeInPs*1000 / ReportIntervalInFs + 0.
↪→5);

const int NumSilentSteps = (int)(ReportIntervalInFs / StepSizeInFs + 0.5);

// ALWAYS enclose all OpenMM calls with a try/catch block to make sure that
// usage and runtime errors are caught and reported.
try {

double time, energy;
std::string platformName;

// Set up OpenMM data structures; returns OpenMM Platform name.
MyOpenMMData* omm = myInitializeOpenMM(atoms, Temperature, FrictionInPerPs,

SolventDielectric, SoluteDielectric, StepSizeInFs, platformName);

// Run the simulation:
// (1) Write the first line of the PDB file and the initial configuration.
// (2) Run silently entirely within OpenMM between reporting intervals.
// (3) Write a PDB frame when the time comes.
printf("REMARK Using OpenMM platform %s\n", platformName.c_str());
myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
myWritePDBFrame(1, time, energy, atoms);

for (int frame=2; frame <= NumReports; ++frame) {
myStepWithOpenMM(omm, NumSilentSteps);
myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
myWritePDBFrame(frame, time, energy, atoms);

}

// Clean up OpenMM data structures.
myTerminateOpenMM(omm);

9.4. HelloSodiumChloride Program 73

OpenMM Users Guide, Release 7.3

return 0; // Normal return from main.
}

// Catch and report usage and runtime errors detected by OpenMM and fail.
catch(const std::exception& e) {

printf("EXCEPTION: %s\n", e.what());
return 1;

}
}

We will examine the implementation of each of the four interface routines and the opaque data structure (handle) in
the sections below.

9.4.2.1 Units

The simple molecular dynamics system described in Section 9.4.1 employs the commonly used units of angstroms and
kcals. These differ from the units and parameters used within OpenMM (see Section 17.2): nanometers and kilojoules.
These differences may be small but they are critical and must be carefully accounted for in the interface routines.

9.4.2.2 Lennard-Jones potential

The Lennard-Jones potential describes the energy between two identical atoms as the distance between them varies.

The van der Waals “size” parameter is used to identify the distance at which the energy between these two atoms is at
a minimum (that is, where the van der Waals force is most attractive). There are several ways to specify this parameter,
typically, either as the van der Waals radius rvdw or as the actual distance between the two atoms dmin (also called rmin),
which is twice the van der Waals radius rvdw. A third way to describe the potential is through sigma σ, which identifies
the distance at which the energy function crosses zero as the atoms move closer together than dmin. (See Section 18.6.1
for more details about the relationship between these).

σ turns out to be about 0.89*dmin, which is close enough to dmin that it makes it hard to distinguish the two. Be very
careful that you use the correct value. In the example below, we will show you how to use the built-in OpenMM
conversion constants to avoid errors.

Lennard-Jones parameters are defined for pairs of identical atoms, but must also be applied to pairs of dissimilar atoms.
That is done by “combining rules” that differ among popular MD codes. Two of the most common are:

• Lorentz-Berthelot (used by AMBER, CHARMM):

r =
ri + rj

2
, ε =

√
εiεj

• Jorgensen (used by OPLS):

r =
√
rirj , ε =

√
εiεj

where r = the effective van der Waals “size” parameter (minimum radius, minimum distance, or zero crossing (sigma)),
and ε = the effective van der Waals energy well depth parameter, for the dissimilar pair of atoms i and j.

OpenMM only implements Lorentz-Berthelot directly, but others can be implemented using the
CustomNonbondedForce class. (See Section 19.4 for details.)

9.4.2.3 Opaque handle MyOpenMMData

In this example, the handle used by the interface to OpenMM is a pointer to a struct called MyOpenMMData. The
pointer itself is opaque, meaning the calling program has no knowledge of what the layout of the object it points to

74 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

is, or how to use it to directly interface with OpenMM. The calling program will simply pass this opaque handle from
one interface routine to another.

There are many different ways to implement the handle. The code below shows just one example. A simulation
requires three OpenMM objects (a System, a Context, and an Integrator) and so these must exist within the handle. If
other objects were required for a simulation, you would just add them to your handle; there would be no change in the
main program using the handle.

struct MyOpenMMData {
MyOpenMMData() : system(0), context(0), integrator(0) {}
~MyOpenMMData() {delete system; delete context; delete integrator;}
OpenMM::System* system;
OpenMM::Context* context;
OpenMM::Integrator* integrator;

};

In addition to establishing pointers to the required three OpenMM objects, MyOpenMMData has a constructor
MyOpenMMData() that sets the pointers for the three OpenMM objects to zero and a destructor ~MyOpenMMData()
that (in C++) gives the heap space back. This was done in-line in the HelloArgon program, but we recommend you
use something like the method here instead.

9.4.2.4 myInitializeOpenMM

The myInitializeOpenMM function takes the data structures and simulation parameters from the existing MD
code and returns a new handle that can be used to do efficient computations with OpenMM. It also returns the
platformName so the calling program knows what platform (e.g., CUDA, OpenCL, Reference) was used.

static MyOpenMMData*
myInitializeOpenMM(const MyAtomInfo atoms[],

double temperature,
double frictionInPs,
double solventDielectric,
double soluteDielectric,
double stepSizeInFs,
std::string& platformName)

This initialization routine is very similar to the HelloArgon example program, except that objects are created and put
in the handle. For instance, just as in the HelloArgon program, the first step is to load the OpenMM plug-ins, so that
the program will run on the best performing platform that is available. Then, a System is created and assigned to the
handle omm. Similarly, forces are added to the System which is already in the handle.

// Load all available OpenMM plugins from their default location.
OpenMM::Platform::loadPluginsFromDirectory

(OpenMM::Platform::getDefaultPluginsDirectory());

// Allocate space to hold OpenMM objects while we're using them.
MyOpenMMData* omm = new MyOpenMMData();

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the OpenMM
// System takes ownership of the force objects;don't delete them yourself.
omm->system = new OpenMM::System();
OpenMM::NonbondedForce* nonbond = new OpenMM::NonbondedForce();
OpenMM::GBSAOBCForce* gbsa = new OpenMM::GBSAOBCForce();
omm->system->addForce(nonbond);
omm->system->addForce(gbsa);

9.4. HelloSodiumChloride Program 75

OpenMM Users Guide, Release 7.3

// Specify dielectrics for GBSA implicit solvation.
gbsa->setSolventDielectric(solventDielectric);
gbsa->setSoluteDielectric(soluteDielectric);

In the next step, atoms are added to the System within the handle, with information about each atom coming from the
data structure that was passed into the initialization function from the existing MD code. As shown in the HelloArgon
program, both the System and the forces need information about the atoms. For those unfamiliar with the C++ Standard
Template Library, the push_back function called at the end of this code snippet just adds the given argument to the
end of a C++ “vector” container.

// Specify the atoms and their properties:
// (1) System needs to know the masses.
// (2) NonbondedForce needs charges,van der Waals properties(in MD units!).
// (3) GBSA needs charge, radius, and scale factor.
// (4) Collect default positions for initializing the simulation later.
std::vector<Vec3> initialPosInNm;
for (int n=0; *atoms[n].pdb; ++n) {

const MyAtomInfo& atom = atoms[n];

omm->system->addParticle(atom.mass);

nonbond->addParticle(atom.charge,
atom.vdwRadiusInAng * OpenMM::NmPerAngstrom

* OpenMM::SigmaPerVdwRadius,
atom.vdwEnergyInKcal * OpenMM::KJPerKcal);

gbsa->addParticle(atom.charge,
atom.gbsaRadiusInAng * OpenMM::NmPerAngstrom,
atom.gbsaScaleFactor);

// Convert the initial position to nm and append to the array.
const Vec3 posInNm(atom.initPosInAng[0] * OpenMM::NmPerAngstrom,

atom.initPosInAng[1] * OpenMM::NmPerAngstrom,
atom.initPosInAng[2] * OpenMM::NmPerAngstrom);

initialPosInNm.push_back(posInNm);

Units: Here we emphasize the need to pay special attention to the units. As mentioned earlier, the existing MD code
in this example uses units of angstroms and kcals, but OpenMM uses nanometers and kilojoules. So the initialization
routine will need to convert the values from the existing MD code into the OpenMM units before assigning them to
the OpenMM objects.

In the code above, we have used the unit conversion constants that come with OpenMM (e.g.,
OpenMM::NmPerAngstrom) to perform these conversions. Combined with the naming convention of including the
units in the variable name (e.g., initPosInAng), the unit conversion constants are useful reminders to pay attention
to units and minimize errors.

Finally, the initialization routine creates the Integrator and Context for the simulation. Again, note the change in units
for the arguments! The routine then gets the platform that will be used to run the simulation and returns that, along
with the handle omm, back to the calling function.

// Choose an Integrator for advancing time, and a Context connecting the
// System with the Integrator for simulation. Let the Context choose the
// best available Platform. Initialize the configuration from the default
// positions we collected above. Initial velocities will be zero but could
// have been set here.
omm->integrator = new OpenMM::LangevinIntegrator(temperature,
frictionInPs,
stepSizeInFs * OpenMM::PsPerFs);

76 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

omm->context = new OpenMM::Context(*omm->system, *omm->integrator);
omm->context->setPositions(initialPosInNm);

platformName = omm->context->getPlatform().getName();
return omm;

9.4.2.5 myGetOpenMMState

The myGetOpenMMState function takes the handle and returns the time, energy, and data structure for the atoms in a
way that the existing MD code can use them without modification.

static void
myGetOpenMMState(MyOpenMMData* omm, bool wantEnergy,

double& timeInPs, double& energyInKcal, MyAtomInfo atoms[])

Again, this is another interface routine in which you need to be very careful of your units! Note the conversion from
the OpenMM units back to the units used in the existing MD code.

int infoMask = 0;
infoMask = OpenMM::State::Positions;
if (wantEnergy) {

infoMask += OpenMM::State::Velocities; // for kinetic energy (cheap)
infoMask += OpenMM::State::Energy; // for pot. energy (more expensive)

}
// Forces are also available (and cheap).

const OpenMM::State state = omm->context->getState(infoMask);
timeInPs = state.getTime(); // OpenMM time is in ps already

// Copy OpenMM positions into atoms array and change units from nm to Angstroms.
const std::vector<Vec3>& positionsInNm = state.getPositions();
for (int i=0; i < (int)positionsInNm.size(); ++i)

for (int j=0; j < 3; ++j)
atoms[i].posInAng[j] = positionsInNm[i][j] * OpenMM::AngstromsPerNm;

// If energy has been requested, obtain it and convert from kJ to kcal.
energyInKcal = 0;
if (wantEnergy)

energyInKcal = (state.getPotentialEnergy() + state.getKineticEnergy())

* OpenMM::KcalPerKJ;

9.4.2.6 myStepWithOpenMM

The myStepWithOpenMM routine takes the handle, uses it to find the Integrator, and then sets the number of steps for
the Integrator to take. It does not return any values.

static void
myStepWithOpenMM(MyOpenMMData* omm, int numSteps) {

omm->integrator->step(numSteps);
}

9.4. HelloSodiumChloride Program 77

OpenMM Users Guide, Release 7.3

9.4.2.7 myTerminateOpenMM

The myTerminateOpenMM routine takes the handle and deletes all the components, e.g., the Context and System,
cleaning up the heap space.

static void
myTerminateOpenMM(MyOpenMMData* omm) {

delete omm;
}

9.5 HelloEthane Program

The HelloEthane program simulates ethane (H3-C-C-H3) in a vacuum. It is structured similarly to the
HelloSodiumChloride example, but includes bonded forces (bond stretch, bond angle bend, dihedral torsion). In
setting up these bonded forces, the program illustrates some of the other inconsistencies in definitions and units that
you should watch out for.

The bonded forces are added to the system within the initialization interface routine, similar to how the non-bonded
forces were added in the HelloSodiumChloride example:

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the System owns
// the force objects and will take care of deleting them; don't do it yourself!
OpenMM::System& system = *(omm->system = new OpenMM::System());
OpenMM::NonbondedForce& nonbond = *new OpenMM::NonbondedForce();
OpenMM::HarmonicBondForce& bondStretch = *new OpenMM::HarmonicBondForce();
OpenMM::HarmonicAngleForce& bondBend = *new OpenMM::HarmonicAngleForce();
OpenMM::PeriodicTorsionForce& bondTorsion = *new OpenMM::PeriodicTorsionForce();
system.addForce(&nonbond);
system.addForce(&bondStretch);
system.addForce(&bondBend);
system.addForce(&bondTorsion);

Constrainable and non-constrainable bonds: In the initialization routine, we also set up the bonds. If constraints
are being used, then we tell the System about the constrainable bonds:

std::vector< std::pair<int,int> > bondPairs;
for (int i=0; bonds[i].type != EndOfList; ++i) {

const int* atom = bonds[i].atoms;
const BondType& bond = bondType[bonds[i].type];

if (UseConstraints && bond.canConstrain) {
system.addConstraint(atom[0], atom[1],

bond.nominalLengthInAngstroms * OpenMM::NmPerAngstrom);
}

Otherwise, we need to give the HarmonicBondForce the bond stretch parameters.

Warning: The constant used to specify the stiffness may be defined differently between the existing MD code and
OpenMM. For instance, AMBER uses the constant, as given in the harmonic energy term kx2, where the force is 2kx
(k = constant and x = distance). OpenMM wants the constant, as used in the force term kx (with energy 0.5 * kx2). So
a factor of 2 must be introduced when setting the bond stretch parameters in an OpenMM system using data from an
AMBER system.

78 Chapter 9. OpenMM Tutorials

OpenMM Users Guide, Release 7.3

bondStretch.addBond(atom[0], atom[1], bond.nominalLengthInAngstroms *
↪→OpenMM::NmPerAngstrom,

bond.stiffnessInKcalPerAngstrom2 * 2 * OpenMM::KJPerKcal *
OpenMM::AngstromsPerNm * OpenMM::AngstromsPerNm);

Non-bond exclusions: Next, we deal with non-bond exclusions. These are used for pairs of atoms that appear close
to one another in the network of bonds in a molecule. For atoms that close, normal non-bonded forces do not apply or
are reduced in magnitude. First, we create a list of bonds to generate the non- bond exclusions:

bondPairs.push_back(std::make_pair(atom[0], atom[1]));

OpenMM’s non-bonded force provides a convenient routine for creating the common exceptions. These are: (1) for
atoms connected by one bond (1-2) or connected by just one additional bond (1-3), Coulomb and van der Waals terms
do not apply; and (2) for atoms connected by three bonds (1-4), Coulomb and van der Waals terms apply but are
reduced by a force-field dependent scale factor. In general, you may introduce additional exceptions, but the standard
ones suffice here and in many other circumstances.

// Exclude 1-2, 1-3 bonded atoms from nonbonded forces, and scale down 1-4 bonded
↪→atoms.
nonbond.createExceptionsFromBonds(bondPairs, Coulomb14Scale, LennardJones14Scale);

// Create the 1-2-3 bond angle harmonic terms.
for (int i=0; angles[i].type != EndOfList; ++i) {

const int* atom = angles[i].atoms;
const AngleType& angle = angleType[angles[i].type];

// See note under bond stretch above regarding the factor of 2 here.
bondBend.addAngle(atom[0],atom[1],atom[2],
angle.nominalAngleInDegrees * OpenMM::RadiansPerDegree,
angle.stiffnessInKcalPerRadian2 * 2 *
OpenMM::KJPerKcal);
}

// Create the 1-2-3-4 bond torsion (dihedral) terms.
for (int i=0; torsions[i].type != EndOfList; ++i) {

const int* atom = torsions[i].atoms;
const TorsionType& torsion = torsionType[torsions[i].type];
bondTorsion.addTorsion(atom[0],atom[1],atom[2],atom[3],

torsion.periodicity,
torsion.phaseInDegrees * OpenMM::RadiansPerDegree,
torsion.amplitudeInKcal * OpenMM::KJPerKcal);

}

The rest of the code is similar to the HelloSodiumChloride example and will not be covered in detail here. Please refer
to the program HelloEthane.cpp itself, which is well-commented, for additional details.

9.5. HelloEthane Program 79

CHAPTER

TEN

PLATFORM-SPECIFIC PROPERTIES

When creating a Context, you can specify values for properties specific to a particular Platform. This is used to control
how calculations are done in ways that are outside the scope of the generic OpenMM API.

To do this, pass both the Platform object and a map of property values to the Context constructor:

Platform& platform = Platform::getPlatformByName("OpenCL");
map<string, string> properties;
properties["DeviceIndex"] = "1";
Context context(system, integrator, platform, properties);

After a Context is created, you can use the Platform’s getPropertyValue()method to query the values of properties.

10.1 OpenCL Platform

The OpenCL Platform recognizes the following Platform-specific properties:

• Precision: This selects what numeric precision to use for calculations. The allowed values are “single”, “mixed”,
and “double”. If it is set to “single”, nearly all calculations are done in single precision. This is the fastest option
but also the least accurate. If it is set to “mixed”, forces are computed in single precision but integration is done
in double precision. This gives much better energy conservation with only a slight decrease in speed. If it is set
to “double”, all calculations are done in double precision. This is the most accurate option, but is usually much
slower than the others.

• UseCpuPme: This selects whether to use the CPU-based PME implementation. The allowed values are “true”
or “false”. Depending on your hardware, this might (or might not) improve performance. To use this option,
you must have FFTW (single precision, multithreaded) installed, and your CPU must support SSE 4.1.

• OpenCLPlatformIndex: When multiple OpenCL implementations are installed on your computer, this is used
to select which one to use. The value is the zero-based index of the platform (in the OpenCL sense, not the
OpenMM sense) to use, in the order they are returned by the OpenCL platform API. This is useful, for example,
in selecting whether to use a GPU or CPU based OpenCL implementation.

• DeviceIndex: When multiple OpenCL devices are available on your computer, this is used to select which one
to use. The value is the zero-based index of the device to use, in the order they are returned by the OpenCL
device API.

The OpenCL Platform also supports parallelizing a simulation across multiple GPUs. To do that, set the DeviceIndex
property to a comma separated list of values. For example,

properties["DeviceIndex"] = "0,1";

This tells it to use both devices 0 and 1, splitting the work between them.

80

OpenMM Users Guide, Release 7.3

10.2 CUDA Platform

The CUDA Platform recognizes the following Platform-specific properties:

• Precision: This selects what numeric precision to use for calculations. The allowed values are “single”, “mixed”,
and “double”. If it is set to “single”, nearly all calculations are done in single precision. This is the fastest option
but also the least accurate. If it is set to “mixed”, forces are computed in single precision but integration is done
in double precision. This gives much better energy conservation with only a slight decrease in speed. If it is set
to “double”, all calculations are done in double precision. This is the most accurate option, but is usually much
slower than the others.

• UseCpuPme: This selects whether to use the CPU-based PME implementation. The allowed values are “true”
or “false”. Depending on your hardware, this might (or might not) improve performance. To use this option,
you must have FFTW (single precision, multithreaded) installed, and your CPU must support SSE 4.1.

• CudaCompiler: This specifies the path to the CUDA kernel compiler. Versions of CUDA before 7.0 require a
separate compiler executable. If you do not specify this, OpenMM will try to locate the compiler itself. Specify
this only when you want to override the default location. The logic used to pick the default location depends on
the operating system:

– Mac/Linux: It first looks for an environment variable called OPENMM_CUDA_COMPILER. If that is
set, its value is used. Otherwise, the default location is set to /usr/local/cuda/bin/nvcc.

– Windows: It looks for an environment variable called CUDA_BIN_PATH, then appends nvcc.exe to it.
That environment variable is set by the CUDA installer, so it usually is present.

• TempDirectory: This specifies a directory where temporary files can be written while compiling kernels.
OpenMM usually can locate your operating system’s temp directory automatically (for example, by looking
for the TEMP environment variable), so you rarely need to specify this.

• DeviceIndex: When multiple CUDA devices are available on your computer, this is used to select which one to
use. The value is the zero-based index of the device to use, in the order they are returned by the CUDA API.

• UseBlockingSync: This is used to control how the CUDA runtime synchronizes between the CPU and GPU. If
this is set to “true” (the default), CUDA will allow the calling thread to sleep while the GPU is performing a
computation, allowing the CPU to do other work. If it is set to “false”, CUDA will spin-lock while the GPU is
working. Setting it to “false” can improve performance slightly, but also prevents the CPU from doing anything
else while the GPU is working.

• DeterministicForces: In some cases, the CUDA platform may compute forces in ways that are not fully
deterministic (typically differing in what order a set of numbers get added together). This means that if you
compute the forces twice for the same particle positions, there may be tiny differences in the results. In most
cases this is not a problem, but certain algorithms depend on forces being exactly reproducible to the last bit.
If you set this property to “true”, it will instead do these calculations in a way that produces fully deterministic
results, at the cost of a small decrease in performance.

The CUDA Platform also supports parallelizing a simulation across multiple GPUs. To do that, set the DeviceIndex
property to a comma separated list of values. For example,

properties["DeviceIndex"] = "0,1";

This tells it to use both devices 0 and 1, splitting the work between them.

10.3 CPU Platform

The CPU Platform recognizes the following Platform-specific properties:

10.2. CUDA Platform 81

OpenMM Users Guide, Release 7.3

• Threads: This specifies the number of CPU threads to use. If you do not specify this, OpenMM will select a
default number of threads as follows:

– If an environment variable called OPENMM_CPU_THREADS is set, its value is used as the number of
threads.

– Otherwise, the number of threads is set to the number of logical CPU cores in the computer it is running
on.

Usually the default value works well. This is mainly useful when you are running something else on the
computer at the same time, and you want to prevent OpenMM from monopolizing all available cores.

10.4 Determinism

Whether a simulation is deterministic will depend on what plaform you run on in addition to what settings/methods you
use. For instance, as of this writing, using PME on the Reference, OpenCL, and double-precision CUDA will result
in deterministic simulations. Single-precision CUDA and CPU platforms are not deterministic in this case. However,
none of this behavior is guaranteed in future versions. In many cases it will still result in an identical trajectory. If
determinism is a critical for your needs, you should carefully check to ensure that your settings and platform allow for
this.

82 Chapter 10. Platform-Specific Properties

CHAPTER

ELEVEN

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES
OTHER THAN C++

Although the native OpenMM API is object-oriented C++ code, it is possible to directly translate the interface so
that it is callable from C, Fortran 95, and Python with no substantial conceptual changes. We have developed a
straightforward mapping for these languages that, while perhaps not the most elegant possible, has several advantages:

• Almost all documentation, training, forum discussions, and so on are equally useful to users of all these
languages. There are syntactic differences of course, but all the important concepts remain unchanged.

• We are able to generate the C, Fortran, and Python APIs from the C++ API. Obviously, this reduces development
effort, but more importantly it means that the APIs are likely to be error-free and are always available
immediately when the native API is updated.

• Because OpenMM performs expensive operations “in bulk” there is no noticeable overhead in accessing these
operations through the C, Fortran, or Python APIs.

• All symbols introduced to a C or Fortran program begin with the prefix “OpenMM_” so will not interfere with
symbols already in use.

Availability of APIs in other languages: All necessary C and Fortran bindings are built in to the main OpenMM library;
no separate library is required. The Python wrappers are contained in a module that is distributed with OpenMM and
that can be installed by executing its setup.py script in the standard way.

(This doesn’t apply to most users: if you are building your own OpenMM from source using CMake and want the API
bindings generated, be sure to enable the OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS option for C and Fortran, or
OPENMM_BUILD_PYTHON_WRAPPERS option for Python. The Python module will be placed in a subdirectory of your
main build directory called “python”)

Documentation for APIs in other languages: While there is extensive Doxygen documentation available for the C++
and Python APIs, there is no separate on-line documentation for the C and Fortran API. Instead, you should use the
C++ documentation, employing the mappings described here to figure out the equivalent syntax in C or Fortran.

11.1 C API

Before you start writing your own C program that calls OpenMM, be sure you can build and run the two C examples
that are supplied with OpenMM (see Chapter 9). These can be built from the supplied Makefile on Linux and Mac,
or supplied NMakefile and Visual Studio solution files on Windows.

The example programs are HelloArgonInC and HelloSodiumChlorideInC. The argon example serves as a quick
check that your installation is set up properly and you know how to build a C program that is linked with OpenMM.
It will also tell you whether OpenMM is executing on the GPU or is running (slowly) on the Reference platform.
However, the argon example is not a good template to follow for your own programs. The sodium chloride example,
though necessarily simplified, is structured roughly in the way we recommended you set up your own programs to call
OpenMM. Please be sure you have both of these programs executing successfully on your machine before continuing.

83

OpenMM Users Guide, Release 7.3

11.1.1 Mechanics of using the C API

The C API is generated automatically from the C++ API when OpenMM is built. There are two resulting components:
C bindings (functions to call), and C declarations (in a header file). The C bindings are small extern (global) interface
functions, one for every method of every OpenMM class, whose signatures (name and arguments) are predictable from
the class name and method signatures. There are also “helper” types and functions provided for the few cases in which
the C++ behavior cannot be directly mapped into C. These interface and helper functions are compiled in to the main
OpenMM library so there is nothing special you have to do to get access to them.

In the include subdirectory of your OpenMM installation directory, there is a machine-generated header file
OpenMMCWrapper.h that should be #included in any C program that is to make calls to OpenMM functions. That
header contains declarations for all the OpenMM C interface functions and related types. Note that if you follow our
suggested structure, you will not need to include this file in your main() compilation unit but can instead use it only
in a local file that you write to provide a simple interface to your existing code (see Chapter 9).

11.1.2 Mapping from the C++ API to the C API

The automated generator of the C “wrappers” follows the translation strategy shown in Table 11-1. The idea is that if
you see the construct on the left in the C++ API documentation, you should interpret it as the corresponding construct
on the right in C. Please look at the supplied example programs to see how this is done in practice.

84 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

Construct C++ API declaration Equivalent in C API
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName typedef OpenMM_ClassName
constant OpenMM::RadiansPerDeg OpenMM_RadiansPerDeg (static

constant)
class enum OpenMM::State::Positions OpenMM_State_Positions
constructor new OpenMM::ClassName()

OpenMM_ClassName*
OpenMM_ClassName_create()
(additional constructors are
_create_2(), etc.)

destructor

OpenMM::ClassName* thing;
delete thing;

OpenMM_ClassName* thing;

OpenMM_ClassName_destroy(thing);

class method

OpenMM::ClassName* thing;
thing->method(args);

OpenMM_ClassName* thing;

OpenMM_ClassName_method(thing,
args)

Boolean (type & constants)

bool
true, false

OpenMM_Boolean
OpenMM_True(1),
OpenMM_False(0)

string std::string char*
3-vector OpenMM::Vec3 typedef OpenMM_Vec3
arrays

std::vector<std::string>
std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string,double>

typedef OpenMM_StringArray
typedef OpenMM_DoubleArray
typedef OpenMM_Vec3Array
typedef OpenMM_BondArray
typedef OpenMM_ParameterArray

Table 11-1: Default mapping of objects from the C++ API to the C API There are some exceptions to the generic
translation rules shown in the table; they are enumerated in the next section. And because there are no C++ API
equivalents to the array types, they are described in detail below.

11.1.3 Exceptions

These two methods are handled somewhat differently in the C API than in the C++ API:

• OpenMM::Context::getState() The C version, OpenMM_Context_getState(), returns a pointer to a heap
allocated OpenMM_State object. You must then explicitly destroy this State object when you are done with
it, by calling OpenMM_State_destroy().

11.1. C API 85

OpenMM Users Guide, Release 7.3

• OpenMM::Platform::loadPluginsFromDirectory() The C version OpenMM_Platform_loadPluginsFromDirectory()
returns a heap-allocated OpenMM_StringArray object containing a list of all the file names that were
successfully loaded. You must then explicitly destroy this StringArray object when you are done with it. Do
not ignore the return value; if you do you’ll have a memory leak since the StringArray will still be allocated.

(In the C++ API, the equivalent methods return references into existing memory rather than new heap-allocated
memory, so the returned objects do not need to be destroyed.)

11.1.4 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the C API provides an explicit
definition for the C OpenMM_Vec3 type that is compatible with the OpenMM::Vec3 type. The definition of
OpenMM_Vec3 is:

typedef struct {double x, y, z;} OpenMM_Vec3;

You can work directly with the individual fields of this type from your C program if you want. For convenience, a
scale() function is provided that creates a new OpenMM_Vec3 from an old one and a scale factor:

OpenMM_Vec3 OpenMM_Vec3_scale(const OpenMM_Vec3 vec, double scale);

11.1.5 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to manipulate arrays of objects.
These don’t have direct equivalents in C, so we supply special array types for each kind of object for which OpenMM
creates containers. These are: string, double, Vec3, bond, and parameter map. See Table 11-2 for the names of the C
types for each of these object arrays. Each of the array types provides these functions (prefixed by OpenMM_ and the
actual Thing name), with the syntax shown conceptually since it differs slightly for each kind of object.

Function Operation
ThingArray* create(int size) Create a heap-allocated array of Things, with space pre-allocated to

hold size of them. You can start at size==0 if you want since these
arrays are dynamically resizeable.

void destroy(ThingArray*) Free the heap space that is currently in use for the passed-in array of
Things.

int getSize(ThingArray*) Return the current number of Things in this array. This means you can
get() and set() elements up to getSize()-1.

void resize(ThingArray*, int size) Change the size of this array to the indicated value which may be
smaller or larger than the current size. Existing elements remain in
their same locations as long as they still fit.

void append(ThingArray*, Thing) Add a Thing to the end of the array, increasing the array size by one.
The precise syntax depends on the actual type of Thing; see below.

void set(ThingArray*, int index, Thing) Store a copy of Thing in the indicated element of the array (indexed
from 0). The array must be of length at least index+1; you can’t grow
the array with this function.

Thing get(ThingArray*, int index) Retrieve a particular element from the array (indexed from 0). (For
some Things the value is returned in arguments rather than as the
function return.)

Table 11-2: Generic description of array helper types

Here are the exact declarations with deviations from the generic description noted, for each of the array types.

86 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

11.1.5.1 OpenMM_DoubleArray

OpenMM_DoubleArray*
OpenMM_DoubleArray_create(int size);

void OpenMM_DoubleArray_destroy(OpenMM_DoubleArray*);
int OpenMM_DoubleArray_getSize(const OpenMM_DoubleArray*);
void OpenMM_DoubleArray_resize(OpenMM_DoubleArray*, int size);
void OpenMM_DoubleArray_append(OpenMM_DoubleArray*, double value);
void OpenMM_DoubleArray_set(OpenMM_DoubleArray*, int index, double value);
double OpenMM_DoubleArray_get(const OpenMM_DoubleArray*, int index);

11.1.5.2 OpenMM_StringArray

OpenMM_StringArray*
OpenMM_StringArray_create(int size);

void OpenMM_StringArray_destroy(OpenMM_StringArray*);
int OpenMM_StringArray_getSize(const OpenMM_StringArray*);
void OpenMM_StringArray_resize(OpenMM_StringArray*, int size);
void OpenMM_StringArray_append(OpenMM_StringArray*, const char* string);
void OpenMM_StringArray_set(OpenMM_StringArray*, int index, const char*
↪→string);
const char* OpenMM_StringArray_get(const OpenMM_StringArray*, int index);

11.1.5.3 OpenMM_Vec3Array

OpenMM_Vec3Array*
OpenMM_Vec3Array_create(int size);

void OpenMM_Vec3Array_destroy(OpenMM_Vec3Array*);
int OpenMM_Vec3Array_getSize(const OpenMM_Vec3Array*);
void OpenMM_Vec3Array_resize(OpenMM_Vec3Array*, int size);
void OpenMM_Vec3Array_append(OpenMM_Vec3Array*, const OpenMM_Vec3 vec);
void OpenMM_Vec3Array_set(OpenMM_Vec3Array*, int index, const OpenMM_Vec3 vec);
const OpenMM_Vec3*

OpenMM_Vec3Array_get(const OpenMM_Vec3Array*, int index);

11.1.5.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method returns those in a pair of final
arguments rather than as its functional return.

OpenMM_BondArray*
OpenMM_BondArray_create(int size);

void OpenMM_BondArray_destroy(OpenMM_BondArray*);
int OpenMM_BondArray_getSize(const OpenMM_BondArray*);
void OpenMM_BondArray_resize(OpenMM_BondArray*, int size);
void OpenMM_BondArray_append(OpenMM_BondArray*, int particle1, int particle2);
void OpenMM_BondArray_set(OpenMM_BondArray*, int index, int particle1, int
↪→particle2);
void OpenMM_BondArray_get(const OpenMM_BondArray*, int index,

int* particle1, int* particle2);

11.1. C API 87

OpenMM Users Guide, Release 7.3

11.1.5.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-created ParameterArrays, so
only the get() and getSize() functions are available. Also, note that since this is actually a map rather than an
array, the “index” is the name of the parameter rather than its ordinal.

int OpenMM_ParameterArray_getSize(const OpenMM_ParameterArray*);
double OpenMM_ParameterArray_get(const OpenMM_ParameterArray*, const char* name);

11.2 Fortran 95 API

Before you start writing your own Fortran program that calls OpenMM, be sure you can build and run the two Fortran
examples that are supplied with OpenMM (see Chapter 9). These can be built from the supplied Makefile on Linux
and Mac, or supplied NMakefile and Visual Studio solution files on Windows.

The example programs are HelloArgonInFortran and HelloSodiumChlorideInFortran. The argon example
serves as a quick check that your installation is set up properly and you know how to build a Fortran program that
is linked with OpenMM. It will also tell you whether OpenMM is executing on the GPU or is running (slowly) on
the Reference platform. However, the argon example is not a good template to follow for your own programs. The
sodium chloride example, though necessarily simplified, is structured roughly in the way we recommended you set up
your own programs to call OpenMM. Please be sure you have both of these programs executing successfully on your
machine before continuing.

11.2.1 Mechanics of using the Fortran API

The Fortran API is generated automatically from the C++ API when OpenMM is built. There are two resulting
components: Fortran bindings (subroutines to call), and Fortran declarations of types and subroutines (in the form of a
Fortran 95 module file). The Fortran bindings are small interface subroutines, one for every method of every OpenMM
class, whose signatures (name and arguments) are predictable from the class name and method signatures. There are
also “helper” types and subroutines provided for the few cases in which the C++ behavior cannot be directly mapped
into Fortran. These interface and helper subroutines are compiled in to the main OpenMM library so there is nothing
special you have to do to get access to them.

Because Fortran is case-insensitive, calls to Fortran subroutines (however capitalized) are mapped by the compiler into
all-lowercase or all-uppercase names, and different compilers use different conventions. The automatically-generated
OpenMM Fortran “wrapper” subroutines, which are generated in C and thus case-sensitive, are provided in two forms
for compatibility with the majority of Fortran compilers, including Intel Fortran and gfortran. The two forms are:
(1) all-lowercase with a trailing underscore, and (2) all-uppercase without a trailing underscore. So regardless of the
Fortran compiler you are using, it should find a suitable subroutine to call in the main OpenMM library.

In the include subdirectory of your OpenMM installation directory, there is a machine-generated module file
OpenMMFortranModule.f90 that must be compiled along with any Fortran program that is to make calls to OpenMM
functions. (You can look at the Makefile or Visual Studio solution file provided with the OpenMM examples to see
how to build a program that uses this module file.) This module file contains definitions for two modules: MODULE
OpenMM_Types and MODULE OpenMM; however, only the OpenMM module will appear in user programs (it references
the other module internally). The modules contain declarations for all the OpenMM Fortran interface subroutines,
related types, and parameters (constants). Note that if you follow our suggested structure, you will not need to use the
OpenMM module in your main() compilation unit but can instead use it only in a local file that you write to provide a
simple interface to your existing code (see Chapter 9).

88 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

11.2.2 Mapping from the C++ API to the Fortran API

The automated generator of the Fortran “wrappers” follows the translation strategy shown in Table 11-3. The idea is
that if you see the construct on the left in the C++ API documentation, you should interpret it as the corresponding
construct on the right in Fortran. Please look at the supplied example programs to see how this is done in practice.
Note that all subroutines and modules are declared with “implicit none”, meaning that the type of every symbol is
declared explicitly and should not be inferred from the first letter of the symbol name.

Construct C++ API declaration Equivalent in Fortran API
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName type (OpenMM_ClassName)
constant OpenMM::RadiansPerDeg parameter

(OpenMM_RadiansPerDeg)
class enum OpenMM::State::Positions parameter

(OpenMM_State_Positions)
constructor new OpenMM::ClassName()

type (OpenMM_ClassName) thing
call
OpenMM_ClassName_create(thing)
(additional constructors are
_create_2(), etc.)

destructor

OpenMM::ClassName* thing;
delete thing;

type (OpenMM_ClassName) thing
call
OpenMM_ClassName_destroy(thing)

class method

OpenMM::ClassName* thing;
thing->method(args*)

type (OpenMM_ClassName) thing
call
OpenMM_ClassName_method(thing,
args)

Boolean (type & constants)

bool
true
false

integer*4
parameter (OpenMM_True=1)
parameter (OpenMM_False=0)

string std::string character(*)
3-vector OpenMM::Vec3 real*8 vec(3)
arrays std::vector<std::string>

std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string, double>

type (OpenMM_StringArray)
type (OpenMM_DoubleArray)
type (OpenMM_Vec3Array)
type (OpenMM_BondArray)
type (OpenMM_ParameterArray)

Table 11-3: Default mapping of objects from the C++ API to the Fortran API

Because there are no C++ API equivalents to the array types, they are described in detail below.

11.2. Fortran 95 API 89

OpenMM Users Guide, Release 7.3

11.2.3 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the Fortran API uses an ordinary
real*8(3) array in place of the OpenMM::Vec3 type. You can work directly with the individual elements of this type
from your Fortran program if you want. For convenience, a scale() function is provided that creates a new Vec3
from an old one and a scale factor:

subroutine OpenMM_Vec3_scale(vec, scale, result)
real*8 vec(3), scale, result(3)

No explicit type(OpenMM_Vec3) is provided in the Fortran API since it is not needed.

11.2.4 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to manipulate arrays of objects.
These don’t have direct equivalents in Fortran, so we supply special array types for each kind of object for which
OpenMM creates containers. These are: string, double, Vec3, bond, and parameter map. See Table 11-4 for the names
of the Fortran types for each of these object arrays. Each of the array types provides these functions (prefixed by
OpenMM_ and the actual Thing name), with the syntax shown conceptually since it differs slightly for each kind of
object.

90 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

Function Operation

subroutine create(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Create a heap-allocated array of Things, with space
pre-allocated to hold size of them. You can start at
size==0 if you want since these arrays are dynamically
resizeable.

subroutine destroy(array)
type (OpenMM_ThingArray) array

Free the heap space that is currently in use for the
passed-in array of Things.

function getSize(array)
type (OpenMM_ThingArray) array
integer*4 size

Return the current number of Things in this array.
This means you can get() and set() elements up to
getSize().

subroutine resize(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Change the size of this array to the indicated value
which may be smaller or larger than the current size.
Existing elements remain in their same locations as long
as they still fit.

subroutine append(array,elt)
type (OpenMM_ThingArray) array
Thing elt

Add a Thing to the end of the array, increasing the array
size by one. The precise syntax depends on the actual
type of Thing; see below.

subroutine set(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 size
Thing elt

Store a copy of elt in the indicated element of the array
(indexed from 1). The array must be of length at least
index; you can’t grow the array with this function.

subroutine get(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 size
Thing elt

Retrieve a particular element from the array (indexed
from 1). Some Things require more than one argument
to return.

Table 11-4: Generic description of array helper types

Here are the exact declarations with deviations from the generic description noted, for each of the array types.

11.2.4.1 OpenMM_DoubleArray

subroutine OpenMM_DoubleArray_create(array, size)
integer*4 size
type (OpenMM_DoubleArray) array

subroutine OpenMM_DoubleArray_destroy(array)

11.2. Fortran 95 API 91

OpenMM Users Guide, Release 7.3

type (OpenMM_DoubleArray) array
function OpenMM_DoubleArray_getSize(array)

type (OpenMM_DoubleArray) array
integer*4 OpenMM_DoubleArray_getSize

subroutine OpenMM_DoubleArray_resize(array, size)
type (OpenMM_DoubleArray) array
integer*4 size

subroutine OpenMM_DoubleArray_append(array, value)
type (OpenMM_DoubleArray) array
real*8 value

subroutine OpenMM_DoubleArray_set(array, index, value)
type (OpenMM_DoubleArray) array
integer*4 index
real*8 value

subroutine OpenMM_DoubleArray_get(array, index, value)
type (OpenMM_DoubleArray) array
integer*4 index
real*8 value

11.2.4.2 OpenMM_StringArray

subroutine OpenMM_StringArray_create(array, size)
integer*4 size
type (OpenMM_StringArray) array

subroutine OpenMM_StringArray_destroy(array)
type (OpenMM_StringArray) array

function OpenMM_StringArray_getSize(array)
type (OpenMM_StringArray) array
integer*4 OpenMM_StringArray_getSize

subroutine OpenMM_StringArray_resize(array, size)
type (OpenMM_StringArray) array
integer*4 size

subroutine OpenMM_StringArray_append(array, str)
type (OpenMM_StringArray) array
character(*) str

subroutine OpenMM_StringArray_set(array, index, str)
type (OpenMM_StringArray) array
integer*4 index
character(*) str

subroutine OpenMM_StringArray_get(array, index, str)
type (OpenMM_StringArray) array
integer*4 index
character(*)str

11.2.4.3 OpenMM_Vec3Array

subroutine OpenMM_Vec3Array_create(array, size)
integer*4 size
type (OpenMM_Vec3Array) array

subroutine OpenMM_Vec3Array_destroy(array)
type (OpenMM_Vec3Array) array

function OpenMM_Vec3Array_getSize(array)
type (OpenMM_Vec3Array) array
integer*4 OpenMM_Vec3Array_getSize

92 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

subroutine OpenMM_Vec3Array_resize(array, size)
type (OpenMM_Vec3Array) array
integer*4 size

subroutine OpenMM_Vec3Array_append(array, vec)
type (OpenMM_Vec3Array) array
real*8 vec(3)

subroutine OpenMM_Vec3Array_set(array, index, vec)
type (OpenMM_Vec3Array) array
integer*4 index
real*8 vec(3)

subroutine OpenMM_Vec3Array_get(array, index, vec)
type (OpenMM_Vec3Array) array
integer*4 index
real*8 vec (3)

11.2.4.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method returns those in a pair of final
arguments rather than as its functional return.

subroutine OpenMM_BondArray_create(array, size)
integer*4 size
type (OpenMM_BondArray) array

subroutine OpenMM_BondArray_destroy(array)
type (OpenMM_BondArray) array

function OpenMM_BondArray_getSize(array)
type (OpenMM_BondArray) array
integer*4 OpenMM_BondArray_getSize

subroutine OpenMM_BondArray_resize(array, size)
type (OpenMM_BondArray) array
integer*4 size

subroutine OpenMM_BondArray_append(array, particle1, particle2)
type (OpenMM_BondArray) array
integer*4 particle1, particle2

subroutine OpenMM_BondArray_set(array, index, particle1, particle2)
type (OpenMM_BondArray) array
integer*4 index, particle1, particle2

subroutine OpenMM_BondArray_get(array, index, particle1, particle2)
type (OpenMM_BondArray) array
integer*4 index, particle1, particle2

11.2.4.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-created ParameterArrays, so
only the get() and getSize() functions are available. Also, note that since this is actually a map rather than an
array, the “index” is the name of the parameter rather than its ordinal.

function OpenMM_ParameterArray_getSize(array)
type (OpenMM_ParameterArray) array
integer*4 OpenMM_ParameterArray_getSize

subroutine OpenMM_ParameterArray_get(array, name, param)
type (OpenMM_ParameterArray) array
character(*) name
character(*) param

11.2. Fortran 95 API 93

OpenMM Users Guide, Release 7.3

11.3 Python API

11.3.1 Installing the Python API

There are currently two types of packages for installing the Python API. One contains wrapper source code for
Unix-type machines (including Linux and Mac operating systems). You will need a C++ compiler to install it using
this type of package. The other type of installation package is a binary package which contains compiled wrapper
code for Windows machines (no compilers are needed to install binary packages).

11.3.1.1 Installing on Windows

OpenMM on Windows only works with Python 3.5, so make sure that version is installed before you try installing.
For Python installation packages and instructions, go to http://python.org. We suggest that you install Python using
the default options.

Double click on the Python API Installer icon, located in the top level directory for the OpenMM installation (by
default, this is C:Program FilesOpenMM). This will install the OpenMM package into the Python installation area. If
you have more than one Python installation, you will be asked which Python to use—make sure to select Python 3.5.

11.3.1.2 Installing on Linux and Mac

Make sure you have Python 2.7 or later installed. For Python installation packages and instructions, go to http:
//python.org. If you do not have the correct Python version, install a valid version using the default options. Most
versions of Linux and Mac OS X have a suitable Python preinstalled. You can check by typing “python --version”
in a terminal window.

You must have a C++ compiler to install the OpenMM Python API. If you are using a Mac, install Apple’s Xcode
development tools (http://developer.apple.com/TOOLS/Xcode) to get the needed compiler. On other Unix-type
systems, install gcc or clang. We recommend clang, since it produces faster code than gcc.

The install.sh script installs the Python API automatically as part of the installation process, so you probably already
have it installed. If for some reason you need to install it manually, you can do that with the setup.py script included
with OpenMM. Before executing this script, you must set two environment variables: OPENMM_INCLUDE_PATH must
point to the directory containing OpenMM header files, and OPENMM_LIB_PATH must point to the directory containing
OpenMM library files. Assuming OpenMM is installed in the default location (/usr/local/openmm), you would
type the following commands. Note that if you are using the system Python (as opposed to a locally installed version),
you may need to use the sudo command when running python setup.py install.

export OPENMM_INCLUDE_PATH=/usr/local/openmm/include
export OPENMM_LIB_PATH=/usr/local/openmm/lib
python setup.py build
python setup.py install

If you are compiling OpenMM from source, you can also install by building the “PythonInstall” target:

make PythonInstall OR sudo make PythonInstall

11.3.2 Mapping from the C++ API to the Python API

The Python API follows the C++ API as closely as possible. There are three notable differences:

1. The getState() method in the Context class takes Pythonic-type arguments to indicate which state variables
should be made available. For example:

94 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

http://python.org
http://python.org
http://python.org
http://developer.apple.com/TOOLS/Xcode

OpenMM Users Guide, Release 7.3

myContext.getState(getEnergy=True, getForce=False, ...)

2. Wherever the C++ API uses references to return multiple values from a method, the Python API returns a tuple.
For example, in C++ you would query a HarmonicBondForce for a bond’s parameters as follows:

int particle1, particle2;
double length, k;
f.getBondParameters(i, particle1, particle2, length, k);

In Python, the equivalent code is:

[particle1, particle2, length, k] = f.getBondParameters(i)

3. Unlike C++, the Python API accepts and returns quantities with units attached to most values (see Section
11.3.4 below for details). In short, this means that while values in C++ have implicit units, the Python API
returns objects that have values and explicit units.

11.3.3 Mechanics of using the Python API

When using the Python API, be sure to include the GPU support libraries in your library path, just as you would for a
C++ application. This is set with the LD_LIBRARY_PATH environment variable on Linux, DYLD_LIBRARY_PATH on
Mac, or PATH on Windows. See Chapter 2.2 for details.

The Python API is contained in the simtk.openmm package, while the units code is contained in the simtk.units
package. (The application layer, described in the Application Guide, is contained in the simtk.openmm.app package.)
A program using it will therefore typically begin

import simtk.openmm as mm
import simtk.unit as unit

Creating and using OpenMM objects is then done exactly as in C++:

system = mm.System()
nb = mm.NonbondedForce()
nb.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)
nb.setCutoffDistance(1.2*unit.nanometer)
system.addForce(nb)

Note that when setting the cutoff distance, we explicitly specify that it is in nanometers. We could just as easily specify
it in different units:

nb.setCutoffDistance(12*unit.angstrom)

The use of units in OpenMM is discussed in the next section.

11.3.4 Units and dimensional analysis

11.3.4.1 Why does the Python API include units?

The C++ API for OpenMM uses an implicit set of units for physical quantities such as lengths, masses, energies, etc.
These units are based on daltons, nanometers, and picoseconds for the mass, length, and time dimensions, respectively.
When using the C++ API, it is very important to ensure that quantities being manipulated are always expressed in terms
of these units. For example, if you read in a distance in Angstroms, you must multiply that distance by a conversion
factor to turn it into nanometers before using it in the C++ API. Such conversions can be a source of tedium and errors.

11.3. Python API 95

OpenMM Users Guide, Release 7.3

This is true in many areas of scientific programming. Units confusion was blamed for the loss of the Mars Climate
Orbiter spacecraft in 1999, at a cost of more than $100 million. Units were introduced in the Python API to minimize
the chance of such errors.

The Python API addresses the potential problem of conversion errors by using quantities with explicit units. If a
particular distance is expressed in Angstroms, the Python API will know that it is in Angstroms. When the time comes
to call the C++ API, it will understand that the quantity must be converted to nanometers. You, the programmer, must
declare upfront that the quantity is in Angstrom units, and the API will take care of the details from then on. Using
explicit units is a bit like brushing your teeth: it requires some effort upfront, but it probably saves you trouble in the
long run.

11.3.4.2 Quantities, units, and dimensions

The explicit unit system is based on three concepts: Dimensions, Units, and Quantities.

Dimensions are measurable physical concepts such as mass, length, time, and energy. Energy is actually a composite
dimension based on mass, length, and time.

A Unit defines a linear scale used to measure amounts of a particular physical Dimension. Examples of units include
meters, seconds, joules, inches, and grams.

A Quantity is a specific amount of a physical Dimension. An example of a quantity is “0.63 kilograms”. A Quantity
is expressed as a combination of a value (e.g., 0.63), and a Unit (e.g., kilogram). The same Quantity can be expressed
in different Units.

The set of BaseDimensions defined in the simtk.unit module includes:

• mass

• length

• time

• temperature

• amount

• charge

• luminous intensity

These are not precisely the same list of base dimensions used in the SI unit system. SI defines “current” (charge per
time) as a base unit, while simtk.unit uses “charge”. And simtk.unit treats angle as a dimension, even though angle
quantities are often considered dimensionless. In this case, we choose to err on the side of explicitness, particularly
because interconversion of degrees and radians is a frequent source of unit headaches.

11.3.4.3 Units examples

Many common units are defined in the simtk.unit module.

from simtk.unit import nanometer, angstrom, dalton

Sometimes you don’t want to type the full unit name every time, so you can assign it a shorter name using the as

functionality:

from simtk.unit import nanometer as nm

New quantities can be created from a value and a unit. You can use either the multiply operator (‘*’) or the explicit
Quantity constructor:

96 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

from simk.unit import nanometer, Quantity
construct a Quantity using the multiply operator
bond_length = 1.53 * nanometer
equivalently using the explicit Quantity constructor
bond_length = Quantity(1.53, nanometer)
or more verbosely
bond_length = Quantity(value=1.53, unit=nanometer)

11.3.4.4 Arithmetic with units

Addition and subtraction of quantities is only permitted between quantities that share the same dimension. It makes
no sense to add a mass to a distance. If you attempt to add or subtract two quantities with different dimensions, an
exception will be raised. This is a good thing; it helps you avoid errors.

x = 5.0*dalton + 4.3*nanometer; # error

Addition or subtraction of quantities with the same dimension, but different units, is fine, and results in a new quantity
created using the correct conversion factor between the units used.

x = 1.3*nanometer + 5.6*angstrom; # OK, result in nanometers

Quantities can be added and subtracted. Naked Units cannot.

Multiplying or dividing two quantities creates a new quantity with a composite dimension. For example, dividing a
distance by a time results in a velocity.

from simtk.unit import kilogram, meter, second
a = 9.8 * meter / second**2; # acceleration
m = 0.36 * kilogram; # mass
F = m * a; # force in kg*m/s**2::

Multiplication or division of two Units results in a composite Unit.

mps = meter / second

Unlike amount (moles), angle (radians) is arguably dimensionless. But simtk.unit treats angle as another dimension.
Use the trigonometric functions from the simtk.unit module (not those from the Python math module!) when dealing
with Units and Quantities.

from simtk.unit import sin, cos, acos
x = sin(90.0*degrees)
angle = acos(0.68); # returns an angle quantity (in radians)

The method pow() is a built-in Python method that works with Quantities and Units.

area = pow(3.0*meter, 2)
or, equivalently
area = (3.0*meter)**2
or
area = 9.0*(meter**2)

The method sqrt() is not as built-in as pow(). Do not use the Python math.sqrt() method with Units and
Quantities. Use the simtk.unit.sqrt() method instead:

from simtk.unit import sqrt
side_length = sqrt(4.0*meter**2)

11.3. Python API 97

OpenMM Users Guide, Release 7.3

11.3.4.5 Atomic scale mass and energy units are “per amount”

Mass and energy units at the atomic scale are specified “per amount” in the simtk.unit module. Amount (mole) is one
of the seven fundamental dimensions in the SI unit system. The atomic scale mass unit, dalton, is defined as grams
per mole. The dimension of dalton is therefore mass/amount, instead of simply mass. Similarly, the atomic scale
energy unit, kilojoule_per_mole (and kilocalorie_per_mole) has “per amount” in its dimension. Be careful to always
use “per amount” mass and energy types at the atomic scale, and your dimensional analysis should work out properly.

The energy unit kilocalories_per_mole does not have the same Dimension as the macroscopic energy unit kilocalories.
Molecular scientists sometimes use the word “kilocalories” when they mean “kilocalories per mole”. Use “kilocalories
per mole” or”kilojoules per mole” for molecular energies. Use “kilocalories” for the metabolic energy content of
your lunch. The energy unit kilojoule_per_mole happens to go naturally with the units nanometer, picoseconds, and
dalton. This is because 1 kilojoule/mole happens to be equal to 1 gram-nanometer2/mole-picosecond2, and is therefore
consistent with the molecular dynamics unit system used in the C++ OpenMM API.

These “per mole” units are what you should be using for molecular calculations, as long as you are using SI / cgs /
calorie sorts of units.

11.3.4.6 SI prefixes

Many units with SI prefixes such as “milligram” (milli) and “kilometer” (kilo) are provided in the simtk.unit module.
Others can be created by multiplying a prefix symbol by a non-prefixed unit:

from simtk.unit import mega, kelvin
megakelvin = mega * kelvin
t = 8.3 * megakelvin

Only grams and meters get all of the SI prefixes (from yotto-(10-24) to yotta-(1024)) automatically.

11.3.4.7 Converting to different units

Use the Quantity.in_units_of() method to create a new Quantity with different units.

from simtk.unit import nanosecond, fortnight
x = (175000*nanosecond).in_units_of(fortnight)

When you want a plain number out of a Quantity, use the value_in_unit() method:

from simtk.unit import femtosecond, picosecond
t = 5.0*femtosecond
t_just_a_number = t.value_in_unit(picoseconds)

Using value_in_unit() puts the responsibility for unit analysis back into your hands, and it should be avoided. It
is sometimes necessary, however, when you are called upon to use a non-units-aware Python API.

11.3.4.8 Lists, tuples, vectors, numpy arrays, and Units

Units can be attached to containers of numbers to create a vector quantity. The simtk.unit module overloads the
__setitem__ and __getitem__ methods for these containers to ensure that Quantities go in and out.

>>> a = Vec3(1,2,3) * nanometers
>>> print(a)
(1, 2, 3) nm
>>> print(a.in_units_of(angstroms))

98 Chapter 11. Using OpenMM with Software Written in Languages Other than C++

OpenMM Users Guide, Release 7.3

(10.0, 20.0, 30.0) A

>>> s2 = [[1,2,3],[4,5,6]] * centimeter
>>> print(s2)
[[1, 2, 3], [4, 5, 6]] cm
>>> print(s2/millimeter)
[[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]]

>>> import numpy
>>> a = numpy.array([1,2,3]) * centimeter
>>> print(a)
[1 2 3] cm
>>> print(a/millimeter)
[10. 20. 30.]

Converting a whole list to different units at once is much faster than converting each element individually. For example,
consider the following code that prints out the position of every particle in a State, as measured in Angstroms:

for v in state.getPositions():
print(v.value_in_unit(angstrom))

This can be rewritten as follows:

for v in state.getPositions().value_in_unit(angstrom):
print(v)

The two versions produce identical results, but the second one will run faster, and therefore is preferred.

11.3. Python API 99

CHAPTER

TWELVE

EXAMPLES OF OPENMM INTEGRATION

12.1 GROMACS

GROMACS is a large, complex application written primarily in C. The considerations involved in adapting it to use
OpenMM are likely to be similar to those faced by developers of other existing applications.

The first principle we followed in adapting GROMACS was to keep all OpenMM-related code isolated to just a
few files, while modifying as little of the existing GROMACS code as possible. This minimized the risk of breaking
existing parts of the code, while making the OpenMM-related parts as easy to work with as possible. It also minimized
the need for C code to invoke the C++ API. (This would not be an issue if we used the OpenMM C API wrapper, but
that is less convenient than the C++ API, and placing all of the OpenMM calls into separate C++ files solves the
problem equally well.) Nearly all of the OpenMM-specific code is contained in a single file, openmm_wrapper.cpp. It
defines four functions which encapsulate all of the interaction between OpenMM and the rest of GROMACS:

openmm_init(): As arguments, this function takes pointers to lots of internal GROMACS data structures that
describe the simulation to be run. It creates a System, Integrator, and Context based on them, then returns an opaque
reference to an object containing them. That reference is an input argument to all of the other functions defined in
openmm_wrapper.cpp. This allows information to be passed between those functions without exposing it to the rest
of GROMACS.

openmm_take_one_step(): This calls step(1) on the Integrator that was created by openmm_init().

openmm_copy_state(): This calls getState() on the Context that was created by openmm_init(), and then
copies information from the resulting State into various GROMACS data structures. This function is how state data
generated by OpenMM is passed back to GROMACS for output, analysis, etc.

openmm_cleanup(): This is called at the end of the simulation. It deletes all the objects that were created by
openmm_init().

This set of functions defines the interactions between GROMACS and OpenMM: copying information from the
application to OpenMM, performing integration, copying information from OpenMM back to the application, and
freeing resources at the end of the simulation. While the details of their implementations are specific to GROMACS,
this overall pattern is fairly generic. A similar set of functions can be used for many other applications as well.

12.2 TINKER-OpenMM

TINKER is written primarily in Fortran, and uses common blocks extensively to store application-wide parameters.
Rather than modify the TINKER build scripts to allow C++ code, it was decided to use the OpenMM C API instead.
Despite these differences, the overall approach used to add OpenMM support was very similar to that used for
GROMACS.

TINKER-OpenMM allows OpenMM to be used to calculate forces and energies and to perform the integration in the
main molecular dynamics loop. The only changes to the TINKER source code are in the file dynamic.f for the setup

100

OpenMM Users Guide, Release 7.3

and running of a simulation. An added file, dynamic_openmm.c, contains the interface C code between TINKER
and OpenMM.

The flow of the molecular dynamics simulation using OpenMM is as follows:

1. The TINKER code is used to read the AMOEBA parameter file, the *.xyz and *.key files. It then parses the
command-line options.

2. The routine map_common_blocks_to_c_data_structs() is called to map the FORTRAN common blocks
to C data structures used in setting the parameters used by OpenMM.

3. The routine openmm_validate() is called from dynamic.f before the main loop. This routine checks
that all required options and settings obtained from the input in step (1) and common blocks in step (2) are
available. If an option or setting is unsupported, the program exits with an appropriate message. The routine
openmm_validate() and the other OpenMM interface methods are in the file dynamic_openmm.c.

4. openmm_init() is called to create the OpenMM System, Integrator and Context objects..

5. openmm_take_steps() is called to take a specified number of time steps.

6. openmm_update() is then called to retrieve the state (energies/positions/velocities) and populate the
appropriate TINKER data structures. These values are converted from the OpenMM units of kJ/nm to kcal/Å
when populating the TINKER arrays.

7. Once the main loop has completed, the routine openmm_cleanup() is called to delete the OpenMM objects
and release resources being used on the GPU.

12.2. TINKER-OpenMM 101

CHAPTER

THIRTEEN

TESTING AND VALIDATION OF OPENMM

The goal of testing and validation is to make sure that OpenMM works correctly. That means that it runs without
crashing or otherwise failing, and that it produces correct results. Furthermore, it must work correctly on a variety
of hardware platforms (e.g. different models of GPU), software platforms (e.g. operating systems and OpenCL
implementations), and types of simulations.

Three types of tests are used to validate OpenMM:

• Unit tests: These are small tests designed to test specific features or pieces of code in isolation. For example, a
test of HarmonicBondForce might create a System with just a few particles and bonds, compute the forces and
energy, and compare them to the analytically expected values. There are thousands of unit tests that collectively
cover all of OpenMM.

• System tests: Whereas unit tests validate small features in isolation, system tests are designed to validate the
entire library as a whole. They simulate realistic models of biomolecules and perform tests that are likely to fail
if any problem exists anywhere in the library.

• Direct comparison between OpenMM and other programs: The third type of validation performed is a
direct comparison of the individual forces computed by OpenMM to those computed by other programs for a
collection of biomolecules.

Each type of test is outlined in greater detail below; a discussion of the current status of the tests is then given.

13.1 Description of Tests

13.1.1 Unit tests

The unit tests are with the source code, so if you build from source you can run them yourself. See Section 8.7 for
details. When you run the tests (for example, by typing “make test” on Linux or Mac), it should produce output
something like this:

Start 1: TestReferenceAndersenThermostat
1/317 Test #1: TestReferenceAndersenThermostat Passed 0.26 sec

Start 2: TestReferenceBrownianIntegrator
2/317 Test #2: TestReferenceBrownianIntegrator Passed 0.13 sec

Start 3: TestReferenceCheckpoints
3/317 Test #3: TestReferenceCheckpoints Passed 0.02 sec
... <many other tests> ...

Each line represents a test suite, which may contain multiple unit tests. If all tests within a suite passed, it prints the
word “Passed” and how long the suite took to execute. Otherwise it prints an error message. If any tests failed, you
can then run them individually (each one is a separate executable) to get more details on what went wrong.

102

OpenMM Users Guide, Release 7.3

13.1.2 System tests

Several different types of system tests are performed. Each type is run for a variety of systems, including both proteins
and nucleic acids, and involving both implicit and explicit solvent. The full suite of tests is repeated for both the
CUDA and OpenCL platforms, using both single and double precision (and for the integration tests, mixed precision
as well), on a variety of operating systems and hardware. There are four types of tests:

• Consistency between platforms: The forces and energy are computed using the platform being tested, then
compared to ones computed with the Reference platform. The results are required to agree to within a small
tolerance.

• Energy-force consistency: This verifies that the force really is the gradient of the energy. It first computes the
vector of forces for a given conformation. It then generates four other conformations by displacing the particle
positions by small amounts along the force direction. It computes the energy of each one, uses those to calculate
a fourth order finite difference approximation to the derivative along that direction, and compares it to the actual
forces. They are required to agree to within a small tolerance.

• Energy conservation: The system is simulated at constant energy using a Verlet integrator, and the total
energy is periodically recorded. A linear regression is used to estimate the rate of energy drift. In addition,
all constrained distances are monitored during the simulation to make sure they never differ from the expected
values by more than the constraint tolerance.

• Thermostability: The system is simulated at constant temperature using a Langevin integrator. The mean
kinetic energy over the course of the simulation is computed and compared to the expected value based on the
temperature. In addition, all constrained distances are monitored during the simulation to make sure they never
differ from the expected values by more than the constraint tolerance.

If you want to run the system tests yourself, they can be found in the Subversion repository at https://simtk.org/svn/
pyopenmm/trunk/test/system-tests. Check out that directory, then execute the runAllTests.sh shell script. It will create
a series of files with detailed information about the results of the tests. Be aware that running the full test suite may
take a long time (possibly several days) depending on the speed of your GPU.

13.1.3 Direct comparisons between OpenMM and other programs

As a final check, identical systems are set up in OpenMM and in another program (Gromacs 4.5 or Tinker 6.1), each
one is used to compute the forces on atoms, and the results are directly compared to each other.

13.2 Test Results

In this section, we highlight the major results obtained from the tests described above. They are not exhaustive, but
should give a reasonable idea of the level of accuracy you can expect from OpenMM.

13.2.1 Comparison to Reference Platform

The differences between forces computed with the Reference platform and those computed with the OpenCL or
CUDA platform are shown in Table 13-1. For every atom, the relative difference between platforms was computed as
2·|Fref–Ftest|/(|Fref|+|Ftest|), where Fref is the force computed by the Reference platform and Ftest is the force computed
by the platform being tested (OpenCL or CUDA). The median over all atoms in a given system was computed to
estimate the typical force errors for that system. Finally, the median of those values for all test systems was computed
to give the value shown in the table.

13.2. Test Results 103

https://simtk.org/svn/pyopenmm/trunk/test/system-tests
https://simtk.org/svn/pyopenmm/trunk/test/system-tests

OpenMM Users Guide, Release 7.3

Force OpenCL
(single)

OpenCL
(double)

CUDA
(single)

CUDA
(double)

Total Force 2.53·10-6 1.44·10-7 2.56·10-6 8.78·10-8

HarmonicBondForce 2.88·10-6 1.57·10-13 2.88·10-6 1.57·10-13

HarmonicAngleForce 2.25·10-5 4.21·10-7 2.27·10-5 4.21·10-7

PeriodicTorsionForce 8.23·10-7 2.44·10-7 9.27·10-7 2.56·10-7

RBTorsionForce 4.86·10-6 1.46·10-7 4.72·10-6 1.4·10-8

NonbondedForce (no cutoff) 1.49·10-6 6.49·10-8 1.49·10-6 6.49·10-8

NonbondedForce (cutoff,
nonperiodic)

9.74·10-7 4.88·10-9 9.73·10-7 4.88·10-9

NonbondedForce (cutoff, periodic) 9.82·10-7 4.88·10-9 9.8·10-7 4.88·10-9

NonbondedForce (Ewald) 1.33·10-6 5.22·10-9 1.33·10-6 5.22·10-9

NonbondedForce (PME) 3.99·10-5 4.08·10-6 3.99·10-5 4.08·10-6

GBSAOBCForce (no cutoff) 3.0·10-6 1.76·10-7 3.09·10-6 9.4·10-8

GBSAOBCForce (cutoff,
nonperiodic)

2.77·10-6 1.76·10-7 2.95·10-6 9.33·10-8

GBSAOBCForce (cutoff, periodic) 2.61·10-6 1.78·10-7 2.77·10-6 9.24·10-8

Table 13-1: Median relative difference in forces between Reference platform and OpenCL/CUDA platform

13.2.2 Energy Conservation

Figure 13-1 shows the total system energy versus time for three simulations of ubiquitin in OBC implicit solvent. All
three simulations used the CUDA platform, a Verlet integrator, a time step of 0.5 fs, no constraints, and no cutoff
on the nonbonded interactions. They differ only in the level of numeric precision that was used for calculations (see
Chapter 10).

Figure 13-1: Total energy versus time for simulations run in three different precision modes.

For the mixed and double precision simulations, the drift in energy is almost entirely diffusive with negligible
systematic drift. The single precision simulation has a more significant upward drift with time, though the rate of

104 Chapter 13. Testing and Validation of OpenMM

OpenMM Users Guide, Release 7.3

drift is still small compared to the rate of short term fluctuations. Fitting a straight line to each curve gives a long
term rate of energy drift of 3.98 kJ/mole/ns for single precision, 0.217 kJ/mole/ns for mixed precision, and 0.00100
kJ/mole/ns for double precision. In the more commonly reported units of kT/ns/dof, these correspond to 4.3·10-4 for
single precision, 2.3·10-5 for mixed precision, and 1.1·10-7 for double precision.

Be aware that different simulation parameters will give different results. These simulations were designed to minimize
all sources of error except those inherent in OpenMM. There are other sources of error that may be significant in other
situations. In particular:

• Using a larger time step increases the integration error (roughly proportional to dt2).

• If a system involves constraints, the level of error will depend strongly on the constraint tolerance specified by
the Integrator.

• When using Ewald summation or Particle Mesh Ewald, the accuracy will depend strongly on the Ewald error
tolerance.

• Applying a distance cutoff to implicit solvent calculations will increase the error, and the shorter the cutoff is,
the greater the error will be.

As a result, the rate of energy drift may be much greater in some simulations than in the ones shown above.

13.2.3 Comparison to Gromacs

OpenMM and Gromacs 4.5.5 were each used to compute the atomic forces for dihydrofolate reductase (DHFR)
in implicit and explicit solvent. The implicit solvent calculations used the OBC solvent model and no cutoff on
nonbonded interactions. The explicit solvent calculations used Particle Mesh Ewald and a 1 nm cutoff on direct space
interactions. For OpenMM, the Ewald error tolerance was set to 10-6. For Gromacs, fourierspacing was set to
0.07 and ewald_rtol to 10-6. No constraints were applied to any degrees of freedom. Both programs used single
precision. The test was repeated for OpenCL, CUDA, and CPU platforms.

For every atom, the relative difference between OpenMM and Gromacs was computed as 2·|FMM–FGro|/(|FMM|+|FGro|),
where FMM is the force computed by OpenMM and FGro is the force computed by Gromacs. The median over all
atoms is shown in Table 13-2.

Solvent Model OpenCL CUDA CPU
Implicit 7.66·10-6 7.68·10-6 1.94·10-5

Explicit 6.77·10-5 6.78·10-5 9.89·10-5

Table 13-2: Median relative difference in forces between OpenMM and Gromacs

13.2. Test Results 105

CHAPTER

FOURTEEN

AMOEBA PLUGIN

OpenMM 7.3 provides a plugin that implements the AMOEBA polarizable atomic multipole force field from Jay
Ponder’s lab. The AMOEBA force field may be used through OpenMM’s Python application layer. We have also
created a modified version of TINKER (referred to as TINKER-OpenMM here) that uses OpenMM to accelerate
AMOEBA simulations. TINKER-OpenMM can be created from a TINKER package using three files made available
through the OpenMM home page. OpenMM AMOEBA Force and System objects containing AMOEBA forces can
be serialized.

At present, AMOEBA is only supported on the CUDA and Reference platforms, not on the OpenCL platform.

In the following sections, the individual forces and options available in the plugin are listed, and the steps required to
build and use the plugin and TINKER-OpenMM are outlined. Validation results are also reported. Benchmarks can
be found on the OpenMM wiki at http://wiki.simtk.org/openmm/Benchmarks.

14.1 OpenMM AMOEBA Supported Forces and Options

14.1.1 Supported Forces and Options

The AMOEBA force terms implemented in OpenMM are listed in Table 14-1 along with the supported and
unsupported options. TINKER options that are not supported for any OpenMM force include the grouping of
atoms (e.g. protein chains), the infinite polymer check, and no exclusion of particles from energy/force calculations
(‘active’/’inactive’ particles). The virial is not calculated for any force.

All rotation axis types are supported: ‘Z-then-X’, ‘Bisector’, ‘Z-Bisect’, ‘3-Fold’, ‘Z-Only’.

106

http://wiki.simtk.org/openmm/Benchmarks

OpenMM Users Guide, Release 7.3

TINKER Force OpenMM Force Option/Note
ebond1 (bondterm) AmoebaBondForce bndtyp=’HARMONIC’ supported,

‘MORSE’ not implemented
Eangle71 (angleterm) AmoebaAngleForce angtyp=’HARMONIC’ and

‘IN-PLANE’ supported; ‘LINEAR’
and ‘FOURIER’ not implemented

etors1a (torsionterm) PeriodicTorsionForce All options implemented;
smoothing version(etors1b) not
supported

etortor1 (tortorterm) AmoebaTorsionTorsionForce All options implemented
eopbend1 (opbendterm) AmoebaOutOfPlaneBendForce opbtyp = ‘ALLINGER’

implemented; ‘W-D-C’ not
implemented

epitors1 (pitorsterm) AmoebaPiTorsionForce All options implemented
estrbnd1 (strbndterm) AmoebaStretchBendForce All options implemented
ehal1a (vdwterm) AmoebaVdwForce ehal1b(LIGHTS) not supported
empole1a (mpoleterm) AmoebaMultipoleForce poltyp = ‘MUTUAL’, ‘DIRECT’

supported
empole1c (mpoleterm) PME AmoebaMultipoleForce poltyp = ‘MUTUAL’, ‘DIRECT’

supported; boundary= ‘VACUUM’
unsupported

esolv1 (solvateterm)

AmoebaWcaDispersionForce,

AmoebaGeneralizedKirkwoodForce

Only born-radius=’grycuk’
and solvate=’GK’ supported;
unsupported solvate settings:
‘ASP’, ‘SASA’, ‘ONION’, ‘pb’,
‘GB-HPMF’, ‘Gk-HPMF’; SASA
computation is based on ACE
approximation

eurey1 (ureyterm) HarmonicBondForce All options implemented

Table 14-1: Mapping between TINKER and OpenMM AMOEBA forces

Some specific details to be aware of are the following:

• Forces available in TINKER but not implemented in the OpenMM AMOEBA plugin include the following:
angle-angle, out-of-plane distance, improper dihedral, improper torsion, stretch-torsion, charge-charge,
atomwise charge-dipole, dipole-dipole, reaction field, ligand field, restraint, scf molecular orbital calculation;
strictly speaking, these are not part of the AMOEBA force field.

• Implicit solvent in TINKER-OpenMM is implemented with key file entry ‘solvate GK’. The entry ‘born-radius
grycuk’ should also be included; only the ‘grycuk’ option for calculating the Born radii is available in the plugin.

• In TINKER, the nonpolar cavity contribution to the solvation term is calculated using an algorithm that does
not map well to GPUs. Instead the OpenMM plugin uses the TINKER version of the ACE approximation to
estimate the cavity contribution to the SASA.

• Calculations using the CUDA platform may be done in either single or double precision; for the Reference
platform, double precision is used. TINKER uses double precision.

• The TINKER parameter files for the AMOEBA force-field parameters are based on units of kilocalorie/Å,
whereas OpenMM uses units of kilojoules/nanometer; both TINKER and OpenMM use picoseconds time units.
Hence, in mapping the force-field parameters from TINKER files to OpenMM, many of the parameter values
must be converted to the OpenMM units. The setup methods in the TINKER-OpenMM application perform the
required conversions.

14.1. OpenMM AMOEBA Supported Forces and Options 107

OpenMM Users Guide, Release 7.3

14.1.2 Supported Integrators

In addition to the limitations to the forces outlined above, TINKER-OpenMM can only use either the ‘Verlet’ or
‘Stochastic’ integrators when the OpenMM plugin is used; an equivalent to the TINKER ‘Beeman’ integrator is
unavailable in OpenMM.

14.2 TINKER-OpenMM

14.2.1 Building TINKER-OpenMM (Linux)

Below are instructions for building TINKER-OpenMM in Linux.

1. To build and install the OpenMM plugin libraries, follow the steps outlined in Chapter 8 (Compiling OpenMM
from Source Code). You will need to set the following options to ‘ON’ when you run CMake:

(a) OPENMM_BUILD_AMOEBA_PLUGIN

(b) OPENMM_BUILD_AMOEBA_CUDA_LIB

(c) OPENMM_BUILD_CUDA_LIB

(d) OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS

2. Download the complete TINKER distribution from http://dasher.wustl.edu/ffe/ and unzip/untar the file.

3. Obtain the modified TINKER file dynamic.f, the interface file dynamic_openmm.c and the Makefile from
the “Downloads” section of OpenMM’s homepage (https://simtk.org/home/openmm) and place them in the
TINKER source directory. These files are compatible with TINKER 6.0.4. If you are using later versions of
TINKER, some minor edits may be required to get the program to compile.

4. In the Makefile, edit the following fields, as needed:

(a) TINKERDIR – This should point to the head of the TINKER distribution directory, e.g.,
‘/home/user/tinker-5.1.09’

(b) LINKDIR – directory in executable path containing linked copies of the TINKER executables; typical
directory would be ‘/usr/local/bin’

(c) CC – This is an added field that should point to the C compiler (e.g., ‘/usr/bin/gcc’)

(d) OpenMM_INSTALL_DIR - This should identify the directory where the OpenMM files were installed,
i.e., the OPENMM_INSTALL_PREFIX setting when CMake was run in step (1)

5. At the command line, type:

make dynamic_openmm.x

to create the executable.

6. Check that the environment variable ‘OPENMM_PLUGIN_DIR’ is set to the installed plugins directory and
that the environment variable ‘LD_LIBRARY_PATH’ includes both the installed lib and plugins directory; for
example:

OPENMM_PLUGIN_DIR=/home/usr/install/openmm/lib/plugins
LD_LIBRARY_PATH=/usr/local/cuda/lib64:/home/usr/install/openmm/lib:

/home/usr/install/openmm/lib/plugins

108 Chapter 14. AMOEBA Plugin

http://dasher.wustl.edu/ffe/
https://simtk.org/home/openmm

OpenMM Users Guide, Release 7.3

14.2.2 Using TINKER-OpenMM

Run dynamic_openmm.x with the same command-line options as you would dynamic.x. Consult the TINKER
documentation and Table 14-1 for more details.

14.2.2.1 Available outputs

Only the total force and potential energy are returned by TINKER-OpenMM; a breakdown of the energy and force
into individual terms (bond, angle, . . .), as is done in TINKER, is unavailable through the OpenMM plugin. Also, the
pressure cannot be calculated since the virial is not calculated in the plugin.

14.2.2.2 Setting the frequency of output data updates

Frequent retrieval of the state information from the GPU board can use up a substantial portion of the total wall
clock time. This is due to the fact that the forces and energies are recalculated for each retrieval. Hence, if the state
information is obtained after every timestep, the wall clock time will approximately double over runs where the state
information in only gathered infrequently (say every 50-100 timesteps).

Two options are provided for updating the TINKER data structures:

1. (DEFAULT) If the logical value of ‘oneTimeStepPerUpdate’ in dynamic.f is true, then a single step is taken
and the TINKER data structures are populated at each step. This option is conceptually simpler and is consistent
with the TINKER md loops; for example, the output from the TINKER subroutine mdstat() will be accurate for
this choice. However, the performance will be degraded since the forces and energy are recalculated with each
call, doubling the required time. This is the default option.

2. If ‘oneTimeStepPerUpdate’ is false, then depending on the values of iprint (TINKER keyword ‘PRINTOUT’)
and iwrite (=dump time/dt), multiple time steps are taken on the GPU before data is transferred from the GPU to
the CPU; here dump time is the value given to the TINKER command-line query ‘Enter Time between Dumps in
Picoseconds’. Under this option, every iprint and every iwrite timesteps, the state information will be retrieved.
For example if ‘PRINTOUT’ is 10 and iwrite is 15, then the information will be retrieved at time steps { 10,
15, 20, 30, 40, 45, . . . }. This option will lead to better performance than option 1. However, a downside to this
approach is that the fluctuation values printed by the Tinker routine mdstat() will be incorrect.

14.2.2.3 Specify the GPU board to use

To specify a GPU board other than the default, set the environment variable ‘CUDA_DEVICE’ to the desired board
id. A line like the following will be printed to stderr for the setting CUDA_DEVICE=2:

Platform Cuda: setting device id to 2 based on env variable CUDA_DEVICE.

14.2.2.4 Running comparison tests between TINKER and OpenMM routines

To turn on testing (comparison of forces and potential energy for the initial conformation calculated using TINKER
routines and OpenMM routines), set ‘applyOpenMMTest’ to a non-zero value in dynamic.f. Note: the program exits
after the force/energy comparisons; it does not execute the main molecular dynamics loop.

Testing individual forces: An example key file for testing the harmonic bond term is as follows:

parameters /home/user/tinker/params/amoebabio09
verbose
solvate GK
born-radius grycuk

14.2. TINKER-OpenMM 109

OpenMM Users Guide, Release 7.3

polar-eps 0.0001
integrate verlet
bondterm only

For the other covalent and Van der Waals forces, replace the line bondterm only above with the following lines
depending on the force to be tested:

angle force: angleterm onl
out-of-plane bend: opbendterm only
stretch bend force strbndterm only
pi-torsion force: pitorsterm only
torsion force: torsionterm only
torsion-torsion force: tortorterm only
Urey-Bradley force: ureyterm only
Van der Waals force: vdwterm only

A sample key file for the multipole force with no cutoffs is given below:

parameters /home/user/tinker/params/amoebabio09
verbose
solvate GK
born-radius grycuk
polar-eps 0.0001
integrate verlet
mpoleterm only
polarizeterm

A sample key file for PME multipole tests

parameters /home/user/tinker/params/amoebabio09
verbose
randomseed 123456789
neighbor-list
vdw-cutoff 12.0
ewald
ewald-cutoff 7.0
pme-grid 64 64 64
polar-eps 0.01
fft-package fftw
integrate verlet
mpoleterm only
polarizeterm

For the Generalized Kirkwood force, the following entries are needed:

parameters /home/user/tinker/params/amoebabio09
verbose
solvate GK
born-radius grycuk
polar-eps 0.0001
integrate verlet
solvateterm only
polarizeterm
mpoleterm

For the implicit solvent (‘solvate GK’ runs) test, the forces and energies will differ due to the different treatments of
the cavity term (see Section 14.1.1 above). With these options for the Generalized Kirkwood force, the test routine

110 Chapter 14. AMOEBA Plugin

OpenMM Users Guide, Release 7.3

will remove the cavity contribution from the TINKER and OpenMM forces/energy when performing the comparisons
between the two calculations.

To test the multipole force or the Generalized Kirkwood forces with direct polarization, add the following line to the
end of the above files:

polarization DIRECT

14.2.2.5 Turning off OpenMM / Reverting to TINKER routines

To use the TINKER routines, as opposed to the OpenMM plugin, to run a simulation, set ‘useOpenMM’ to .false. in
dynamic.f.

14.3 OpenMM AMOEBA Validation

OpenMM and TINKER 6.1.01 were each used to compute the atomic forces for dihydrofolate reductase (DHFR)
in implicit and explicit solvent. Calculations used the CUDA platform, and were repeated for both single and
double precision. For every atom, the relative difference between OpenMM and TINKER was computed as
2·|FMM–FT|/(|FMM|+|FT|), where FMM is the force computed by OpenMM and FT is the force computed by TINKER.
The median over all atoms is shown in Table 14-2.

Because OpenMM and TINKER use different approximations to compute the cavity term, the differences in forces are
much larger for implicit solvent than for explicit solvent. We therefore repeated the calculations, removing the cavity
term. This yields much closer agreement between OpenMM and TINKER, demonstrating that the difference comes
entirely from that one term.

Solvent Model single double
Implicit 1.04·10-2 1.04·10-2

Implicit (no cavity term) 9.23·10-6 1.17·10-6

Explicit 3.73·10-5 1.83·10-7

Table 14-2: Median relative difference in forces between OpenMM and TINKER

14.3. OpenMM AMOEBA Validation 111

CHAPTER

FIFTEEN

RING POLYMER MOLECULAR DYNAMICS (RPMD) PLUGIN

Ring Polymer Molecular Dynamics (RPMD) provides an efficient approach to include nuclear quantum effects in
molecular simulations.[31] When used to calculate static equilibrium properties, RPMD reduces to path integral
molecular dynamics and gives an exact description of the effect of quantum fluctuations for a given potential energy
model.[32] For dynamical properties RPMD is no longer exact but has shown to be a good approximation in many
cases.

For a system with a classical potential energy E(q), the RPMD Hamiltonian is given by

H =

n∑
k=1

(
pk2

2m
+ E(qk) +

m(kBTn)2

2~2
(qk − qk−1)2

)
This Hamiltonian resembles that of a system of classical ring polymers where different copies of the system are
connected by harmonic springs. Hence each copy of the classical system is commonly referred to as a “bead”.
The spread of the ring polymer representing each particle is directly related to its De Broglie thermal wavelength
(uncertainty in its position).

RPMD calculations must be converged with respect to the number n of beads used. Each bead is evolved at the
effective temperature nT, where T is the temperature for which properties are required. The number of beads needed
to converge a calculation can be estimated using[33]

n >
~ωmax

kBT

where ωmax is the highest frequency in the problem. For example, for flexible liquid water the highest frequency is the
OH stretch at around 3000 cm-1, so around 24 to 32 beads are needed depending on the accuracy required. For rigid
water where the highest frequency is only around 1000 cm-1, only 6 beads are typically needed. Due to the replication
needed of the classical system, the extra cost of the calculation compared to a classical simulation increases linearly
with the number of beads used.

This cost can be reduced by “contracting” the ring polymer to a smaller number of beads.[33] The rapidly changing
forces are then computed for the full number of beads, while slower changing forces are computed on a smaller set.
In the case of flexible water, for example, a common arrangement would be to compute the high frequency bonded
forces on all 32 beads, the direct space nonbonded forces on only 6 beads, and the reciprocal space nonbonded forces
on only a single bead.

Due to the stiff spring terms between the beads, NVE RPMD trajectories can suffer from ergodicity problems
and hence thermostatting is highly recommended, especially when dynamical properties are not required.[34] The
thermostat implemented here is the path integral Langevin equation (PILE) approach.[35] This method couples an
optimal white noise Langevin thermostat to the normal modes of each polymer, leaving only one parameter to be
chosen by the user which controls the friction applied to the center of mass of each ring polymer. A good choice for
this is to use a value similar to that used in a classical calculation of the same system.

112

CHAPTER

SIXTEEN

DRUDE PLUGIN

Drude oscillators are a method for incorporating electronic polarizability into a model.[36] For each polarizable
particle, a second particle (the “Drude particle”) is attached to it by an anisotropic harmonic spring. When both
particles are at the same location, they are equivalent to an ordinary point particle. Applying an electric field causes
the Drude particle to move a short distance away from its parent particle, creating an induced dipole moment. The
polarizability α is related to the charge q on the Drude particle and the spring constant k by

α =
q2

k

A damped interaction[37] is used between dipoles that are bonded to each other.

The equations of motion can be integrated with two different methods:

1. In the Self Consistent Field (SCF) method, the ordinary particles are first updated as usual. A local energy
minimization is then performed to select new positions for the Drude particles. This ensures that the induced
dipole moments respond instantly to changes in their environments. This method is accurate but computationally
expensive.

2. In the extended Lagrangian method, the positions of the Drude particles are treated as dynamical variables, just
like any other particles. A small amount of mass is transferred from the parent particles to the Drude particles,
allowing them to be integrated normally. A dual Langevin integrator is used to maintain the center of mass
of each Drude particle pair at the system temperature, while using a much lower temperature for their relative
internal motion. In practice, this produces dipole moments very close to those from the SCF solution while
being much faster to compute.

113

CHAPTER

SEVENTEEN

THE THEORY BEHIND OPENMM: INTRODUCTION

17.1 Overview

This guide describes the mathematical theory behind OpenMM. For each computational class, it describes what
computations the class performs and how it should be used. This serves two purposes. If you are using OpenMM
within an application, this guide teaches you how to use it correctly. If you are implementing the OpenMM API for a
new Platform, it teaches you how to correctly implement the required kernels.

On the other hand, many details are intentionally left unspecified. Any behavior that is not specified either in this
guide or in the API documentation is left up to the Platform, and may be implemented in different ways by different
Platforms. For example, an Integrator is required to produce a trajectory that satisfies constraints to within the
user-specified tolerance, but the algorithm used to enforce those constraints is left up to the Platform. Similarly,
this guide provides the functional form of each Force, but does not specify what level of numerical precision it must
be calculated to.

This is an essential feature of the design of OpenMM, because it allows the API to be implemented efficiently on
a wide variety of hardware and software platforms, using whatever methods are most appropriate for each platform.
On the other hand, it means that a single program may produce meaningfully different results depending on which
Platform it uses. For example, different constraint algorithms may have different regions of convergence, and thus
a time step that is stable on one platform may be unstable on a different one. It is essential that you validate your
simulation methodology on each Platform you intend to use, and do not assume that good results on one Platform will
guarantee good results on another Platform when using identical parameters.

17.2 Units

There are several different sets of units widely used in molecular simulations. For example, energies may be measured
in kcal/mol or kJ/mol, distances may be in Angstroms or nm, and angles may be in degrees or radians. OpenMM uses
the following units everywhere.

Quantity Units
distance nm
time ps
mass atomic mass units
charge proton charge
temperature Kelvin
angle radians
energy kJ/mol

These units have the important feature that they form an internally consistent set. For example, a force always has
the same units (kJ/mol/nm) whether it is calculated as the gradient of an energy or as the product of a mass and an
acceleration. This is not true in some other widely used unit systems, such as those that express energy in kcal/mol.

114

OpenMM Users Guide, Release 7.3

The header file Units.h contains predefined constants for converting between the OpenMM units and some other
common units. For example, if your application expresses distances in Angstroms, you should multiply them
by OpenMM::NmPerAngstrom before passing them to OpenMM, and positions calculated by OpenMM should be
multiplied by OpenMM::AngstromsPerNm before passing them back to your application.

17.2. Units 115

CHAPTER

EIGHTEEN

STANDARD FORCES

The following classes implement standard force field terms that are widely used in molecular simulations.

18.1 HarmonicBondForce

Each harmonic bond is represented by an energy term of the form

E =
1

2
k(x− x0)

2

where x is the distance between the two particles, x0 is the equilibrium distance, and k is the force constant. This
produces a force of magnitude k(x-x0).

Be aware that some force fields define their harmonic bond parameters in a slightly different way: E = k´(x-x0)2,
leading to a force of magnitude 2k´(x-x0). Comparing these two forms, you can see that k = 2k´. Be sure to check
which form a particular force field uses, and if necessary multiply the force constant by 2.

18.2 HarmonicAngleForce

Each harmonic angle is represented by an energy term of the form

E =
1

2
k(θ − θ0)

2

where θ is the angle formed by the three particles, θ0 is the equilibrium angle, and k is the force constant.

As with HarmonicBondForce, be aware that some force fields define their harmonic angle parameters as E = k´(θ-θ0)2.
Be sure to check which form a particular force field uses, and if necessary multiply the force constant by 2.

18.3 PeriodicTorsionForce

Each torsion is represented by an energy term of the form

E = k (1 + cos (nθ − θ0))

where θ is the dihedral angle formed by the four particles, θ0 is the phase offset, n is the periodicity, and k is the force
constant.

116

OpenMM Users Guide, Release 7.3

18.4 RBTorsionForce

Each torsion is represented by an energy term of the form

E =

5∑
i=0

Ci(cosφ)
i

where φ is the dihedral angle formed by the four particles and C0 through C5 are constant coefficients.

For reason of convention, PeriodicTorsionForce and RBTorsonForce define the torsion angle differently. θ is zero when
the first and last particles are on the same side of the bond formed by the middle two particles (the cis configuration),
whereas φ is zero when they are on opposite sides (the trans configuration). This means that θ = φ - π.

18.5 CMAPTorsionForce

Each torsion pair is represented by an energy term of the form

E = f (θ1, θ2)

where θ1 and θ2 are the two dihedral angles coupled by the term, and f (x,y) is defined by a user-supplied grid of
tabulated values. A natural cubic spline surface is fit through the tabulated values, then evaluated to determine the
energy for arbitrary (θ1, θ2) pairs.

18.6 NonbondedForce

18.6.1 Lennard-Jones Interaction

The Lennard-Jones interaction between each pair of particles is represented by an energy term of the form

E = 4ε

((σ
r

)12
−
(σ
r

)6)
where r is the distance between the two particles, σ is the distance at which the energy equals zero, and ε sets the
strength of the interaction. If the NonbondedMethod in use is anything other than NoCutoff and r is greater than the
cutoff distance, the energy and force are both set to zero. Because the interaction decreases very quickly with distance,
the cutoff usually has little effect on the accuracy of simulations.

Optionally you can use a switching function to make the energy go smoothly to 0 at the cutoff distance. When
rswitch < r < rcutoff , the energy is multiplied by

S = 1− 6x5 + 15x4 − 10x3

where x = (r−rswitch)/(rcutoff −rswitch). This function decreases smoothly from 1 at r = rswitch to 0 at r = rcutoff ,
and has continuous first and second derivatives at both ends.

When an exception has been added for a pair of particles, σ and ε are the parameters specified by the exception.
Otherwise they are determined from the parameters of the individual particles using the Lorentz-Berthelot combining
rule:

σ =
σ1 + σ2

2

ε =
√
ε1ε2

18.4. RBTorsionForce 117

OpenMM Users Guide, Release 7.3

When using periodic boundary conditions, NonbondedForce can optionally add a term (known as a long range
dispersion correction) to the energy that approximately represents the contribution from all interactions beyond the
cutoff distance:[38]

Ecor =
8πN2

V

(
〈εijσ12

ij 〉
9rc

9 −
〈εijσ6

ij〉
3rc

3

)

where N is the number of particles in the system, V is the volume of the periodic box, rc is the cutoff distance, σij
and εij are the interaction parameters between particle i and particle j, and 〈...〉 represents an average over all pairs of
particles in the system. When a switching function is in use, there is also a contribution to the correction that depends
on the integral of E·(1-S) over the switching interval. The long range dispersion correction is primarily useful when
running simulations at constant pressure, since it produces a more accurate variation in system energy with respect to
volume.

The Lennard-Jones interaction is often parameterized in two other equivalent ways. One is

E = ε

((rmin

r

)12
− 2
(rmin

r

)6)
where rmin (sometimes known as dmin ; this is not a radius) is the center-to-center distance at which the energy is
minimum. It is related to σ by

σ =
rmin

21/6

In turn, rmin is related to the van der Waals radius by rmin = 2rvdw .

Another common form is

E =
A

r12 −
B

r6

The coefficients A and B are related to σ and ε by

σ =

(
A

B

)1/6

ε =
B2

4A

18.6.2 Coulomb Interaction Without Cutoff

The form of the Coulomb interaction between each pair of particles depends on the NonbondedMethod in use. For
NoCutoff, it is given by

E =
1

4πε0

q1q2
r

where q1 and q2 are the charges of the two particles, and r is the distance between them.

18.6.3 Coulomb Interaction With Cutoff

For CutoffNonPeriodic or CutoffPeriodic, it is modified using the reaction field approximation. This is derived by
assuming everything beyond the cutoff distance is a solvent with a uniform dielectric constant.[39]

E =
q1q2
4πε0

(
1

r
+ krf r

2 − crf
)

118 Chapter 18. Standard Forces

OpenMM Users Guide, Release 7.3

krf =

(
1

rcutoff 3

)(
εsolvent − 1

2εsolvent + 1

)
crf =

(
1

rcutoff

)(
3εsolvent

2εsolvent + 1

)
where rcutoff is the cutoff distance and εsolvent is the dielectric constant of the solvent. In the limit εsolvent >> 1, this
causes the force to go to zero at the cutoff.

18.6.4 Coulomb Interaction With Ewald Summation

For Ewald, the total Coulomb energy is the sum of three terms: the direct space sum, the reciprocal space sum, and
the self-energy term.[40]

E = Edir + Erec + Eself

Edir =
1

2

∑
i,j

∑
n

qiqj
erfc (αr ij,n)

rij,n

Erec =
1

2πV

∑
i,j

qiqj
∑
k6=0

exp(−(πk/α)2 + 2πik · (ri − rj))

m2

Eself = − α√
π

∑
i

qi2

In the above expressions, the indices i and j run over all particles, n = (n1, n2, n3) runs over all copies of the periodic
cell, and k = (k1, k2, k3) runs over all integer wave vectors from (-kmax, -kmax, -kmax) to (kmax, kmax, kmax) excluding (0,
0, 0). ri is the position of particle i , while rij is the distance between particles i and j. V is the volume of the periodic
cell, and α is an internal parameter.

In the direct space sum, all pairs that are further apart than the cutoff distance are ignored. Because the cutoff is
required to be less than half the width of the periodic cell, the number of terms in this sum is never greater than the
square of the number of particles.

The error made by applying the direct space cutoff depends on the magnitude of erfc(αrcutoff). Similarly, the
error made in the reciprocal space sum by ignoring wave numbers beyond kmax depends on the magnitude of
exp(−(πkmax/α)2). By changing α, one can decrease the error in either term while increasing the error in the
other one.

Instead of having the user specify α and -kmax, NonbondedForce instead asks the user to choose an error tolerance δ.
It then calculates α as

α =
√
−log (2δ)/rcutoff

Finally, it estimates the error in the reciprocal space sum as

error =
kmax

√
dα

20
exp(−(πkmax/dα)2)

where d is the width of the periodic box, and selects the smallest value for kmax which gives error < δ. (If the box is
not square, kmax will have a different value along each axis.)

This means that the accuracy of the calculation is determined by δ. rcutoff does not affect the accuracy of the result,
but does affect the speed of the calculation by changing the relative costs of the direct space and reciprocal space sums.
You therefore should test different cutoffs to find the value that gives best performance; this will in general vary both
with the size of the system and with the Platform being used for the calculation. When the optimal cutoff is used for
every simulation, the overall cost of evaluating the nonbonded forces scales as O(N3/2) in the number of particles.

Be aware that the error tolerance δ is not a rigorous upper bound on the errors. The formulas given above are
empirically found to produce average relative errors in the forces that are less than or similar to δ across a variety
of systems and parameter values, but no guarantees are made. It is important to validate your own simulations, and
identify parameter values that produce acceptable accuracy for each system.

18.6. NonbondedForce 119

OpenMM Users Guide, Release 7.3

18.6.5 Coulomb Interaction With Particle Mesh Ewald

The Particle Mesh Ewald (PME) algorithm[41] is similar to Ewald summation, but instead of calculating the reciprocal
space sum directly, it first distributes the particle charges onto nodes of a rectangular mesh using 5th order B-splines.
By using a Fast Fourier Transform, the sum can then be computed very quickly, giving performance that scales as O(N
log N) in the number of particles (assuming the volume of the periodic box is proportional to the number of particles).

As with Ewald summation, the user specifies the direct space cutoff rcutoff and error tolerance δ. NonbondedForce
then selects α as

α =
√
−log (2δ)/rcutoff

and the number of nodes in the mesh along each dimension as

nmesh =
2αd

3δ1/5

where d is the width of the periodic box along that dimension. Alternatively, the user may choose to explicitly set
values for these parameters. (Note that some Platforms may choose to use a larger value of nmesh than that given by
this equation. For example, some FFT implementations require the mesh size to be a multiple of certain small prime
numbers, so a Platform might round it up to the nearest permitted value. It is guaranteed that nmesh will never be
smaller than the value given above.)

The comments in the previous section regarding the interpretation of δ for Ewald summation also apply to PME, but
even more so. The behavior of the error for PME is more complicated than for simple Ewald summation, and while
the above formulas will usually produce an average relative error in the forces less than or similar to δ, this is not a
rigorous guarantee. PME is also more sensitive to numerical round-off error than Ewald summation. For Platforms
that do calculations in single precision, making δ too small (typically below about 5·10-5) can actually cause the error
to increase.

18.6.6 Lennard-Jones Interaction With Particle Mesh Ewald

The PME algorithm can also be used for Lennard-Jones interactions. Usually this is not necessary, since Lennard-Jones
forces are short ranged, but there are situations (such as membrane simulations) where neglecting interactions beyond
the cutoff can measurably affect results.

For computational efficiency, certain approximations are made[42]. Interactions beyond the cutoff distance include
only the attractive 1/r6 term, not the repulsive 1/r12 term. Since the latter is much smaller than the former at long
distances, this usually has negligible effect. Also, the interaction between particles farther apart than the cutoff distance
is computed using geometric combination rules:

σ =
√
σ1σ2

The effect of this approximation is also quite small, and it is still far more accurate than ignoring the interactions
altogether (which is what would happen with PME).

The formula used to compute the number of nodes along each dimension of the mesh is slightly different from the one
used for Coulomb interactions:

nmesh =
αd

3δ1/5

As before, this is an empirical formula. It will usually produce an average relative error in the forces less than or
similar to δ, but that is not guaranteed.

120 Chapter 18. Standard Forces

OpenMM Users Guide, Release 7.3

18.7 GBSAOBCForce

18.7.1 Generalized Born Term

GBSAOBCForce consists of two energy terms: a Generalized Born Approximation term to represent the electrostatic
interaction between the solute and solvent, and a surface area term to represent the free energy cost of solvating a
neutral molecule. The Generalized Born energy is given by[21]

E=-
1

2

(
1

εsolute
− 1

εsolvent

)∑
i,j

qiqj
fGB (dij , Ri, Rj)

where the indices i and j run over all particles, εsolute and εsolvent are the dielectric constants of the solute and solvent
respectively, qi is the charge of particle i, and dij is the distance between particles i and j. fGB(dij , Ri, Rj) is defined
as

fGB (dij , Ri, Rj) =

[
d2ij +RiRjexp

(
−d2ij

4RiRj

)]1/2
Ri is the Born radius of particle i, which calculated as

Ri =
1

ρ−1i − r
−1
i tanh

(
αΨi − βΨ2

i + γΨ3
i

)
where α, β, and γ are the GBOBCII parameters α = 1, β = 0.8, and γ = 4.85. ρi is the adjusted atomic radius of particle
i, which is calculated from the atomic radius ri as ρi = ri − 0.009 nm. Ψi is calculated as an integral over the van der
Waals spheres of all particles outside particle i:

Ψi =
ρi
4π

∫
VDW

θ (|r| − ρi)
1

|r|4
d3r

where θ(r) is a step function that excludes the interior of particle i from the integral.

18.7.2 Surface Area Term

The surface area term is given by[43][44]

E = ESA · 4π
∑
i

(ri + rsolvent)
2

(
ri
Ri

)6

where ri is the atomic radius of particle i, ri is its atomic radius, and rsolvent is the solvent radius, which is taken to
be 0.14 nm. The default value for the energy scale ESA is 2.25936 kJ/mol/nm2.

18.8 GayBerneForce

This is similar to the Lennard-Jones interaction described in section 18.6.1, but instead of being based on the distance
between two point particles, it is based on the distance of closest approach between two ellipsoids.[45] Let A1 and
A2 be rotation matrices that transform from the lab frame to the body frames of two interacting ellipsoids. These
rotations are determined from the positions of other particles, as described in the API documentation. Let r12 be the
vector pointing from particle 1 to particle 2, and r̂12 = r12/|r12|. Let S1 and S2 be diagonal matrices containing the
three radii of each particle:

Si =

ai 0 0
0 bi 0
0 0 ci


18.7. GBSAOBCForce 121

OpenMM Users Guide, Release 7.3

The energy is computed as a product of three terms:

E = Ur(A1,A2, r12) · η12(A1,A2) · χ12(A1,A2, r̂12)

The first term describes the distance dependence, and is very similar in form to the Lennard-Jones interaction:

Ur = 4ε

((
σ

h12 + σ

)12

−
(

σ

h12 + σ

)6
)

where h12 is an approximation to the distance of closest approach between the two ellipsoids:

h12 = |r12| − σ12(A1,A2, r̂12)

σ12(A1,A2, r̂12) =

[
1

2
r̂T12G

−1
12 r̂12

]−1/2
G12 = AT

1 S
2
1A1 + AT

2 S
2
2A2

The second term adjusts the energy based on the relative orientations of the two ellipsoids:

η12(A1,A2) =

[
2s1s2

det(G12)

]1/2
si = (aibi + c2i)

√
aibi

The third term applies the user-defined scale factors ea, eb, and ec that adjust the strength of the interaction along each
axis:

χ12(A1,A2, r̂12) = (2r̂T12B
−1
12 r̂12)2

B12 = AT
1 E1A1 + AT

2 E2A2

Ei =

e
−1/2
ai 0 0

0 e
−1/2
bi 0

0 0 e
−1/2
ci


When using a cutoff, you can optionally use a switching function to make the energy go smoothly to 0 at the cutoff
distance. When rswitch < r < rcutoff , the energy is multiplied by

S = 1− 6x5 + 15x4 − 10x3

where x = (r−rswitch)/(rcutoff −rswitch). This function decreases smoothly from 1 at r = rswitch to 0 at r = rcutoff ,
and has continuous first and second derivatives at both ends.

18.9 AndersenThermostat

AndersenThermostat couples the system to a heat bath by randomly selecting a subset of particles at the start of each
time step, then setting their velocities to new values chosen from a Boltzmann distribution. This represents the effect
of random collisions between particles in the system and particles in the heat bath.[46]

The probability that a given particle will experience a collision in a given time step is

P = 1− e−fΔt

where f is the collision frequency and ∆t is the step size. Each component of its velocity is then set to

vi =

√
kBT

m
R

where T is the thermostat temperature, m is the particle mass, and R is a random number chosen from a normal
distribution with mean of zero and variance of one.

122 Chapter 18. Standard Forces

OpenMM Users Guide, Release 7.3

18.10 MonteCarloBarostat

MonteCarloBarostat models the effect of constant pressure by allowing the size of the periodic box to vary with
time.[47][48] At regular intervals, it attempts a Monte Carlo step by scaling the box vectors and the coordinates of
each molecule’s center by a factor s. The scale factor s is chosen to change the volume of the periodic box from V to
V+∆V:

s =

(
V + ∆V

V

)1/3

The change in volume is chosen randomly as

∆V = A · r

where A is a scale factor and r is a random number uniformly distributed between -1 and 1. The step is accepted or
rejected based on the weight function

∆W = ∆E + P∆V −NkBT ln
(
V + ∆V

V

)
where ∆E is the change in potential energy resulting from the step, P is the pressure being applied to the system, N is
the number of molecules in the system, kB is Boltzmann’s constant, and T is the system temperature. In particular, if
∆W ≤ 0 the step is always accepted. If ∆W > 0, the step is accepted with probability exp(−∆W/kBT).

This algorithm tends to be more efficient than deterministic barostats such as the Berendsen or Parrinello-Rahman
algorithms, since it does not require an expensive virial calculation at every time step. Each Monte Carlo step involves
two energy evaluations, but this can be done much less often than every time step. It also does not require you to
specify the compressibility of the system, which usually is not known in advance.

The scale factor A that determines the size of the steps is chosen automatically to produce an acceptance rate of
approximately 50%. It is initially set to 1% of the periodic box volume. The acceptance rate is then monitored, and if
it varies too much from 50% then A is modified accordingly.

Each Monte Carlo step modifies particle positions by scaling the centroid of each molecule, then applying the resulting
displacement to each particle in the molecule. This ensures that each molecule is translated as a unit, so bond lengths
and constrained distances are unaffected.

MonteCarloBarostat assumes the simulation is being run at constant temperature as well as pressure, and the
simulation temperature affects the step acceptance probability. It does not itself perform temperature regulation,
however. You must use another mechanism along with it to maintain the temperature, such as LangevinIntegrator or
AndersenThermostat.

18.11 MonteCarloAnisotropicBarostat

MonteCarloAnisotropicBarostat is very similar to MonteCarloBarostat, but instead of scaling the entire periodic box
uniformly, each Monte Carlo step scales only one axis of the box. This allows the box to change shape, and is useful for
simulating anisotropic systems whose compressibility is different along different directions. It also allows a different
pressure to be specified for each axis.

You can specify that the barostat should only be applied to certain axes of the box, keeping the other axes fixed. This
is useful, for example, when doing constant surface area simulations of membranes.

18.12 MonteCarloMembraneBarostat

MonteCarloMembraneBarostat is very similar to MonteCarloBarostat, but it is specialized for simulations of
membranes. It assumes the membrane lies in the XY plane. In addition to applying a uniform pressure to regulate the

18.10. MonteCarloBarostat 123

OpenMM Users Guide, Release 7.3

volume of the periodic box, it also applies a uniform surface tension to regulate the cross sectional area of the periodic
box in the XY plane. The weight function for deciding whether to accept a step is

∆W = ∆E + P∆V − S∆A−NkBT ln
(
V + ∆V

V

)
where S is the surface tension and ∆A is the change in cross sectional area. Notice that pressure and surface tension
are defined with opposite senses: a larger pressure tends to make the box smaller, but a larger surface tension tends to
make the box larger.

MonteCarloMembraneBarostat offers some additional options to customize the behavior of the periodic box:

• The X and Y axes can be either

– isotropic (they are always scaled by the same amount, so their ratio remains fixed)

– anisotropic (they can change size independently)

• The Z axis can be either

– free (its size changes independently of the X and Y axes)

– fixed (its size does not change)

– inversely varying with the X and Y axes (so the total box volume does not change)

18.13 CMMotionRemover

CMMotionRemover prevents the system from drifting in space by periodically removing all center of mass motion.
At the start of every n’th time step (where n is set by the user), it calculates the total center of mass velocity of the
system:

vCM =

∑
imivi∑
imi

where mi and vi are the mass and velocity of particle i. It then subtracts vCM from the velocity of every particle.

18.14 RMSDForce

RMSDForce computes the root-mean-squared deviation (RMSD) between the current particle positions xi and a set
of reference positions xref

i :

RMSD =

√∑
i ‖xi − xref

i ‖2
N

Before computing this, the reference positions are first translated and rotated so as to minimize the RMSD. The
computed value is therefore argmin(RMSD), where the argmin is taken over all possible translations and rotations.

This force is normally used with a CustomCVForce (see Section 19.11). One rarely wants a force whose energy
exactly equals the RMSD, but there are many situations where it is useful to have a restraining or biasing force that
depends on the RMSD in some way.

124 Chapter 18. Standard Forces

CHAPTER

NINETEEN

CUSTOM FORCES

In addition to the standard forces described in the previous chapter, OpenMM provides a number of “custom” force
classes. These classes provide detailed control over the mathematical form of the force by allowing the user to specify
one or more arbitrary algebraic expressions. The details of how to write these custom expressions are described in
section 19.12.

19.1 CustomBondForce

CustomBondForce is similar to HarmonicBondForce in that it represents an interaction between certain pairs of
particles as a function of the distance between them, but it allows the precise form of the interaction to be specified by
the user. That is, the interaction energy of each bond is given by

E = f (r)

where f (r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an arbitrary set of user defined
parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-bond parameters are defined by specifying a value for each bond.

19.2 CustomAngleForce

CustomAngleForce is similar to HarmonicAngleForce in that it represents an interaction between sets of three particles
as a function of the angle between them, but it allows the precise form of the interaction to be specified by the user.
That is, the interaction energy of each angle is given by

E = f (θ)

where f(θ) is a user defined mathematical expression.

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of user defined parameters.
Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-angle parameters are defined by specifying a value for each angle.

125

OpenMM Users Guide, Release 7.3

19.3 CustomTorsionForce

CustomTorsionForce is similar to PeriodicTorsionForce in that it represents an interaction between sets of four particles
as a function of the dihedral angle between them, but it allows the precise form of the interaction to be specified by
the user. That is, the interaction energy of each angle is given by

E = f(θ)

where f(θ) is a user defined mathematical expression. The angle θ is guaranteed to be in the range [-π, π]. Like
PeriodicTorsionForce, it is defined to be zero when the first and last particles are on the same side of the bond formed
by the middle two particles (the cis configuration).

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of user defined parameters.
Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-torsion parameters are defined by specifying a value for each torsion.

19.4 CustomNonbondedForce

CustomNonbondedForce is similar to NonbondedForce in that it represents a pairwise interaction between all particles
in the System, but it allows the precise form of the interaction to be specified by the user. That is, the interaction energy
between each pair of particles is given by

E = f(r)

where f (r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an arbitrary set of user defined
parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-particle parameters are defined by specifying a value for each particle.

A CustomNonbondedForce can optionally be restricted to only a subset of particle pairs in the System. This is done
by defining “interaction groups”. See the API documentation for details.

When using a cutoff, a switching function can optionally be applied to make the energy go smoothly to 0 at the cutoff
distance. When rswitch < r < rcutoff , the energy is multiplied by

S = 1− 6x5 + 15x4 − 10x3

where x = (r−rswitch)/(rcutoff −rswitch). This function decreases smoothly from 1 at r = rswitch to 0 at r = rcutoff ,
and has continuous first and second derivatives at both ends.

When using periodic boundary conditions, CustomNonbondedForce can optionally add a term (known as a long range
truncation correction) to the energy that approximately represents the contribution from all interactions beyond the
cutoff distance:[38]

Ecor =
2πN2

V

〈 ∞∫
rcutoff

E(r)r2dr

〉

where N is the number of particles in the system, V is the volume of the periodic box, and 〈...〉 represents an average
over all pairs of particles in the system. When a switching function is in use, there is an additional contribution to the

126 Chapter 19. Custom Forces

OpenMM Users Guide, Release 7.3

correction given by

E′cor =
2πN2

V

〈rcutoff∫
rswitch

E(r)(1− S(r))r2dr

〉

The long range dispersion correction is primarily useful when running simulations at constant pressure, since it
produces a more accurate variation in system energy with respect to volume.

19.5 CustomExternalForce

CustomExternalForce represents a force that is applied independently to each particle as a function of its position.
That is, the energy of each particle is given by

E = f(x, y, z)

where f (x, y, z) is a user defined mathematical expression.

In addition to depending on the particle’s (x, y, z) coordinates, the energy may also depend on an arbitrary set of user
defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-particle parameters are defined by specifying a value for each particle.

19.6 CustomCompoundBondForce

CustomCompoundBondForce supports a wide variety of bonded interactions. It defines a “bond” as a single energy
term that depends on the positions of a fixed set of particles. The number of particles involved in a bond, and how the
energy depends on their positions, is configurable. It may depend on the positions of individual particles, the distances
between pairs of particles, the angles formed by sets of three particles, and the dihedral angles formed by sets of four
particles. That is, the interaction energy of each bond is given by

E = f({xi}, {ri}, {θi}, {φi})

where f (...) is a user defined mathematical expression. It may depend on an arbitrary set of positions {xi}, distances
{ri}, angles {θi}, and dihedral angles {φi} guaranteed to be in the range [-π, π].

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from among the particles
that make up the bond. A distance variable is defined by two particles, and equals the distance between them. An
angle variable is defined by three particles, and equals the angle between them. A dihedral variable is defined by four
particles, and equals the angle between the first and last particles about the axis formed by the middle two particles. It
is equal to zero when the first and last particles are on the same side of the axis.

In addition to depending on positions, distances, angles, and dihedrals, the energy may also depend on an arbitrary set
of user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-bond parameters are defined by specifying a value for each bond.

19.5. CustomExternalForce 127

OpenMM Users Guide, Release 7.3

19.7 CustomCentroidBondForce

CustomCentroidBondForce is very similar to CustomCompoundBondForce, but instead of creating bonds between
individual particles, the bonds are between the centers of groups of particles. This is useful for purposes such as
restraining the distance between two molecules or pinning the center of mass of a single molecule.

The first step in computing this force is to calculate the center position of each defined group of particles. This is
calculated as a weighted average of the positions of all the particles in the group, with the weights being user defined.
The computation then proceeds exactly as with CustomCompoundBondForce, but the energy of each “bond” is now
calculated based on the centers of a set of groups, rather than on the positions of individual particles.

This class supports all the same function types and features as CustomCompoundBondForce. In fact, any interaction
that could be implemented with CustomCompoundBondForce can also be implemented with this class, simply by
defining each group to contain only a single atom.

19.8 CustomManyParticleForce

CustomManyParticleForce is similar to CustomNonbondedForce in that it represents a custom nonbonded interaction
between particles, but it allows the interaction to depend on more than two particles. This allows it to represent a wide
range of non-pairwise interactions. It is defined by specifying the number of particles N involved in the interaction
and how the energy depends on their positions. More specifically, it takes a user specified energy function

E = f({xi}, {ri}, {θi}, {φi})

that may depend on an arbitrary set of positions {xi}, distances {ri}, angles {θi}, and dihedral angles {φi} from a
particular set of N particles.

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from among the particles in
the set. A distance variable is defined by two particles, and equals the distance between them. An angle variable is
defined by three particles, and equals the angle between them. A dihedral variable is defined by four particles, and
equals the angle between the first and last particles about the axis formed by the middle two particles. It is equal to
zero when the first and last particles are on the same side of the axis.

In addition to depending on positions, distances, angles, and dihedrals, the energy may also depend on an arbitrary set
of user defined parameters. Parameters may be specified in two ways:

• Global parameters have a single, fixed value.

• Per-particle parameters are defined by specifying a value for each particle.

The energy function is evaluated one or more times for every unique set of N particles in the system. The exact
number of times depends on the permutation mode. A set of N particles has N ! possible permutations. In
SinglePermutation mode, the function is evaluated for a single arbitrarily chosen one of those permutations. In
UniqueCentralParticle mode, the function is evaluated for N of those permutations, once with each particle as
the “central particle”.

The number of times the energy function is evaluated can be further restricted by specifying type filters. Each particle
may have a “type” assigned to it, and then each of the N particles involved in an interaction may be restricted to only
a specified set of types. This provides a great deal of flexibility in controlling which particles interact with each other.

19.9 CustomGBForce

CustomGBForce implements complex, multiple stage nonbonded interactions between particles. It is designed
primarily for implementing Generalized Born implicit solvation models, although it is not strictly limited to that
purpose.

128 Chapter 19. Custom Forces

OpenMM Users Guide, Release 7.3

The interaction is specified as a series of computations, each defined by an arbitrary algebraic expression. These
computations consist of some number of per-particle computed values, followed by one or more energy terms. A
computed value is a scalar value that is computed for each particle in the system. It may depend on an arbitrary
set of global and per-particle parameters, and well as on other computed values that have been calculated before it.
Once all computed values have been calculated, the energy terms and their derivatives are evaluated to determine the
system energy and particle forces. The energy terms may depend on global parameters, per-particle parameters, and
per-particle computed values.

Computed values can be calculated in two different ways:

• Single particle values are calculated by evaluating a user defined expression for each particle:

valuei = f (...)

where f (...) may depend only on properties of particle i (its coordinates and parameters, as well as other
computed values that have already been calculated).

• Particle pair values are calculated as a sum over pairs of particles:

valuei =
∑
j 6=i

f (r, ...)

where the sum is over all other particles in the System, and f (r, ...) is a function of the distance r between
particles i and j, as well as their parameters and computed values.

Energy terms may similarly be calculated per-particle or per-particle-pair.

• Single particle energy terms are calculated by evaluating a user defined expression for each particle:

E = f (...)

where f (...) may depend only on properties of that particle (its coordinates, parameters, and computed
values).

• Particle pair energy terms are calculated by evaluating a user defined expression once for every pair of particles
in the System:

E =
∑
i,j

f (r, ...)

where the sum is over all particle pairs i < j, and f (r, ...) is a function of the distance r between particles i
and j, as well as their parameters and computed values.

Note that energy terms are assumed to be symmetric with respect to the two interacting particles, and therefore are
evaluated only once per pair. In contrast, expressions for computed values need not be symmetric and therefore are
calculated twice for each pair: once when calculating the value for the first particle, and again when calculating the
value for the second particle.

Be aware that, although this class is extremely general in the computations it can define, particular Platforms may
only support more restricted types of computations. In particular, all currently existing Platforms require that the
first computed value must be a particle pair computation, and all computed values after the first must be single
particle computations. This is sufficient for most Generalized Born models, but might not permit some other types of
calculations to be implemented.

19.10 CustomHbondForce

CustomHbondForce supports a wide variety of energy functions used to represent hydrogen bonding. It computes
interactions between “donor” particle groups and “acceptor” particle groups, where each group may include up to
three particles. Typically a donor group consists of a hydrogen atom and the atoms it is bonded to, and an acceptor

19.10. CustomHbondForce 129

OpenMM Users Guide, Release 7.3

group consists of a negatively charged atom and the atoms it is bonded to. The interaction energy between each donor
group and each acceptor group is given by

E = f({ri}, {θi}, {φi})

where f (...) is a user defined mathematical expression. It may depend on an arbitrary set of distances {ri}, angles
{θi}, and dihedral angles {φi}.

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from the interacting donor and
acceptor groups (up to six atoms to choose from, since each group may contain up to three atoms). A distance variable
is defined by two particles, and equals the distance between them. An angle variable is defined by three particles, and
equals the angle between them. A dihedral variable is defined by four particles, and equals the angle between the first
and last particles about the axis formed by the middle two particles. It is equal to zero when the first and last particles
are on the same side of the axis.

In addition to depending on distances, angles, and dihedrals, the energy may also depend on an arbitrary set of user
defined parameters. Parameters may be specified in three ways:

• Global parameters have a single, fixed value.

• Per-donor parameters are defined by specifying a value for each donor group.

• Per-acceptor parameters are defined by specifying a value for each acceptor group.

19.11 CustomCVForce

CustomCVForce computes an energy as a function of “collective variables”. A collective variable may be any scalar
valued function of the particle positions and other parameters. Each one is defined by a Force object, so any function
that can be defined via any force class (either standard or custom) can be used as a collective variable. The energy is
then computed as

E = f(...)

where f (...) is a user supplied mathematical expression of the collective variables. It also may depend on user defined
global parameters.

19.12 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions. These expressions are specified
as character strings, and may involve a variety of standard operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^ (power). Parentheses “(“
and “)” may be used for grouping.

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, sinh, cosh,
tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. step(x) = 0 if x < 0, 1 otherwise. delta(x) = 1 if x is 0, 0
otherwise. select(x,y,z) = z if x = 0, y otherwise. Some custom forces allow additional functions to be defined from
tabulated values.

Numbers may be given in either decimal or exponential form. All of the following are valid numbers: 5, -3.1, 1e6, and
3.12e-2.

The variables that may appear in expressions are specified in the API documentation for each force class. In addition,
an expression may be followed by definitions for intermediate values that appear in the expression. A semicolon “;” is
used as a delimiter between value definitions. For example, the expression

130 Chapter 19. Custom Forces

OpenMM Users Guide, Release 7.3

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses of a value must appear
before that value’s definition.

19.13 Setting Parameters

Most custom forces have two types of parameters you can define. The simplest type are global parameters, which
represent a single number. The value is stored in the Context, and can be changed at any time by calling
setParameter() on it. Global parameters are designed to be very inexpensive to change. Even if you set a
new value for a global parameter on every time step, the overhead will usually be quite small. There can be exceptions
to this rule, however. For example, if a CustomNonbondedForce uses a long range correction, changing a global
parameter may require the correction coefficient to be recalculated, which is expensive.

The other type of parameter is ones that record many values, one for each element of the force, such as per-particle
or per-bond parameters. These values are stored directly in the force object itself, and hence are part of the system
definition. When a Context is created, the values are copied over to it, and thereafter the two are disconnected.
Modifying the force will have no effect on any Context that already exists.

Some forces do provide a way to modify these parameters via an updateParametersInContext() method.
These methods tend to be somewhat expensive, so it is best not to call them too often. On the other hand, they are
still much less expensive than calling reinitialize() on the Context, which is the other way of updating the
system definition for a running simulation.

19.14 Parameter Derivatives

Many custom forces have the ability to compute derivatives of the potential energy with respect to global parameters.
To use this feature, first define a global parameter that the energy depends on. Then instruct the custom force to
compute the derivative with respect to that parameter by calling addEnergyParameterDerivative() on it.
Whenever forces and energies are computed, the specified derivative will then also be computed at the same time. You
can query it by calling getState() on a Context, just as you would query forces or energies.

An important application of this feature is to use it in combination with a CustomIntegrator (described in section
20.6). The derivative can appear directly in expressions that define the integration algorithm. This can be used to
implement algorithms such as lambda-dynamics, where a global parameter is integrated as a dynamic variable.

19.13. Setting Parameters 131

CHAPTER

TWENTY

INTEGRATORS

20.1 VerletIntegrator

VerletIntegrator implements the leap-frog Verlet integration method. The positions and velocities stored in the context
are offset from each other by half a time step. In each step, they are updated as follows:

vi(t+ ∆t/2) = vi(t−∆t/2) + fi(t)∆t/mi

ri(t+ ∆t) = ri(t) + vi(t+ ∆t/2)∆t

where vi is the velocity of particle i, ri is its position, fi is the force acting on it, mi is its mass, and ∆t is the time
step.

Because the positions are always half a time step later than the velocities, care must be used when calculating the
energy of the system. In particular, the potential energy and kinetic energy in a State correspond to different times,
and you cannot simply add them to get the total energy of the system. Instead, it is better to retrieve States after two
successive time steps, calculate the on-step velocities as

vi(t) =
vi (t−∆t/2) + vi (t+ ∆t/2)

2

then use those velocities to calculate the kinetic energy at time t.

20.2 LangevinIntegator

LangevinIntegator simulates a system in contact with a heat bath by integrating the Langevin equation of motion:

mi
dvi

dt
= fi − γmivi + Ri

where vi is the velocity of particle i, fi is the force acting on it, mi is its mass, γ is the friction coefficient, and Ri is
an uncorrelated random force whose components are chosen from a normal distribution with mean zero and variance
2miγkBT , where T is the temperature of the heat bath.

The integration is done using a leap-frog method similar to VerletIntegrator. [49] The same comments about the offset
between positions and velocities apply to this integrator as to that one.

20.3 BrownianIntegrator

BrownianIntegrator simulates a system in contact with a heat bath by integrating the Brownian equation of motion:

dri
dt

=
1

γmi
fi + Ri

132

OpenMM Users Guide, Release 7.3

where ri is the position of particle i, fi is the force acting on it, γ is the friction coefficient, and Ri is an uncorrelated
random force whose components are chosen from a normal distribution with mean zero and variance 2kBT/miγ,
where T is the temperature of the heat bath.

The Brownian equation of motion is derived from the Langevin equation of motion in the limit of large γ. In that case,
the velocity of a particle is determined entirely by the instantaneous force acting on it, and kinetic energy ceases to
have much meaning, since it disappears as soon as the applied force is removed.

20.4 VariableVerletIntegrator

This is very similar to VerletIntegrator, but instead of using the same step size for every time step, it continuously
adjusts the step size to keep the integration error below a user-specified tolerance. It compares the positions generated
by Verlet integration with those that would be generated by an explicit Euler integrator, and takes the difference
between them as an estimate of the integration error:

error = (∆t)
2
∑
i

|fi|
mi

where fi is the force acting on particle i and mi is its mass. (In practice, the error made by the Euler integrator is
usually larger than that made by the Verlet integrator, so this tends to overestimate the true error. Even so, it can
provide a useful mechanism for step size control.)

It then selects the value of ∆t that makes the error exactly equal the specified error tolerance:

∆t =

√
δ∑
i
|fi|
mi

where δ is the error tolerance. This is the largest step that may be taken consistent with the user-specified accuracy
requirement.

(Note that the integrator may sometimes choose to use a smaller value for ∆t than given above. For example, it might
restrict how much the step size can grow from one step to the next, or keep the step size constant rather than increasing
it by a very small amount. This behavior is not specified and may vary between Platforms. It is required, however, that
∆t never be larger than the value given above.)

A variable time step integrator is generally superior to a fixed time step one in both stability and efficiency. It can take
larger steps on average, but will automatically reduce the step size to preserve accuracy and avoid instability when
unusually large forces occur. Conversely, when each uses the same step size on average, the variable time step one
will usually be more accurate since the time steps are concentrated in the most difficult areas of the trajectory.

Unlike a fixed step size Verlet integrator, variable step size Verlet is not symplectic. This means that for a given
average step size, it will not conserve energy as precisely over long time periods, even though each local region of the
trajectory is more accurate. For this reason, it is most appropriate when precise energy conservation is not important,
such as when simulating a system at constant temperature. For constant energy simulations that must maintain the
energy accurately over long time periods, the fixed step size Verlet may be more appropriate.

20.5 VariableLangevinIntegrator

This is similar to LangevinIntegrator, but it continuously adjusts the step size using the same method as
VariableVerletIntegrator. It is usually preferred over the fixed step size Langevin integrator for the reasons given
above. Furthermore, because Langevin dynamics involves a random force, it can never be symplectic and therefore
the fixed step size Verlet integrator’s advantages do not apply to the Langevin integrator.

20.4. VariableVerletIntegrator 133

OpenMM Users Guide, Release 7.3

20.6 CustomIntegrator

CustomIntegrator is a very flexible class that can be used to implement a wide range of integration methods. This
includes both deterministic and stochastic integrators; Metropolized integrators; multiple time step integrators; and
algorithms that must integrate additional quantities along with the particle positions and momenta.

The algorithm is specified as a series of computations that are executed in order to perform a single time step. Each
computation computes the value (or values) of a variable. There are two types of variables: global variables have
a single value, while per-DOF variables have a separate value for every degree of freedom (that is, every x, y, or z
component of a particle). CustomIntegrator defines lots of variables you can compute and/or use in computing other
variables. Some examples include the step size (global), the particle positions (per-DOF), and the force acting on each
particle (per-DOF). In addition, you can define as many variables as you want for your own use.

The actual computations are defined by mathematical expressions as described in section 19.12. Several types of
computations are supported:

• Global: the expression is evaluated once, and the result is stored into a global variable.

• Per-DOF: the expression is evaluated once for every degree of freedom, and the results are stored into a per-DOF
variable.

• Sum: the expression is evaluated once for every degree of freedom. The results for all degrees of freedom are
added together, and the sum is stored into a global variable.

There also are other, more specialized types of computations that do not involve mathematical expressions. For
example, there are computations that apply distance constraints, modifying the particle positions or velocities
accordingly.

CustomIntegrator is a very powerful tool, and this description only gives a vague idea of the scope of its capabilities.
For full details and examples, consult the API documentation.

134 Chapter 20. Integrators

CHAPTER

TWENTYONE

OTHER FEATURES

21.1 Periodic Boundary Conditions

Many Force objects support periodic boundary conditions. They act as if space were tiled with infinitely repeating
copies of the system, then compute the forces acting on a single copy based on the infinite periodic copies. In most
(but not all) cases, they apply a cutoff so that each particle only interacts with a single copy of each other particle.

OpenMM supports triclinic periodic boxes. This means the periodicity is defined by three vectors, a, b, and c. Given a
particle position, the infinite periodic copies of that particle are generated by adding vectors of the form ia+ jb+ kc,
where i, j, and k are arbitrary integers.

The periodic box vectors must be chosen to satisfy certain requirements. Roughly speaking, a, b, and c need to
“mostly” correspond to the x, y, and z axes. They must have the form

a = (ax, 0, 0)

b = (bx, by, 0)

c = (cx, cy, cz)

It is always possible to put the box vectors into this form by rotating the system until a is parallel to x and b lies in the
xy plane.

Furthermore, they must obey the following constraints:

ax > 0, by > 0, cz > 0

ax ≥ 2|bx|
ax ≥ 2|cx|
by ≥ 2|cy|

This effectively requires the box vectors to be specified in a particular reduced form. By forming combinations of box
vectors (a process known as “lattice reduction”), it is always possible to put them in this form without changing the
periodic system they represent.

These requirements have an important consequence: the periodic unit cell can always be treated as an axis-aligned
rectangular box of size (ax, by, cz). The remaining non-zero elements of the box vectors cause the repeating copies of
the system to be staggered relative to each other, but they do not affect the shape or size of each copy. The volume of
the unit cell is simply given by axbycz .

21.2 LocalEnergyMinimizer

This provides an implementation of the L-BFGS optimization algorithm. [50] Given a Context specifying initial
particle positions, it searches for a nearby set of positions that represent a local minimum of the potential energy.

135

OpenMM Users Guide, Release 7.3

Distance constraints are enforced during minimization by adding a harmonic restraining force to the potential
function. The strength of the restraining force is steadily increased until the minimum energy configuration satisfies
all constraints to within the tolerance specified by the Context’s Integrator.

21.3 XMLSerializer

This provides the ability to “serialize” a System, Force, Integrator, or State object to a portable XML format, then
reconstruct it again later. When serializing a System, the XML data contains a complete copy of the entire system
definition, including all Forces that have been added to it.

Here are some examples of uses for this class:

1. A model building utility could generate a System in memory, then serialize it to a file on disk. Other programs
that perform simulation or analysis could then reconstruct the model by simply loading the XML file.

2. When running simulations on a cluster, all model construction could be done on a single node. The Systems and
Integrators could then be encoded as XML, allowing them to be easily transmitted to other nodes.

XMLSerializer is a templatized class that, in principle, can be used to serialize any type of object. At present, however,
only System, Force, Integrator, and State are supported.

21.4 Force Groups

It is possible to split the Force objects in a System into groups. Those groups can then be evaluated independently
of each other. Some Force classes also provide finer grained control over grouping. For example, NonbondedForce
allows direct space computations to be in one group and reciprocal space computations in a different group.

The most important use of force groups is for implementing multiple time step algorithms with CustomIntegrator. For
example, you might evaluate the slowly changing nonbonded interactions less frequently than the quickly changing
bonded ones. It also is useful if you want the ability to query a subset of the forces acting on the system.

21.5 Virtual Sites

A virtual site is a particle whose position is computed directly from the positions of other particles, not by integrating
the equations of motion. An important example is the “extra sites” present in 4 and 5 site water models. These
particles are massless, and therefore cannot be integrated. Instead, their positions are computed from the positions of
the massive particles in the water molecule.

Virtual sites are specified by creating a VirtualSite object, then telling the System to use it for a particular particle.
The VirtualSite defines the rules for computing its position. It is an abstract class with subclasses for specific types of
rules. They are:

• TwoParticleAverageSite: The virtual site location is computed as a weighted average of the positions of two
particles:

r = w1r1 + w2r2

• ThreeParticleAverageSite: The virtual site location is computed as a weighted average of the positions of three
particles:

r = w1r1 + w2r2 + w3r3

• OutOfPlaneSite: The virtual site location is computed as a weighted average of the positions of three particles
and the cross product of their relative displacements:

136 Chapter 21. Other Features

OpenMM Users Guide, Release 7.3

r = r1 + w12r12 + w13r13 + wcross (r12 × r13)

where r12 = r2 − r1 and r13 = r3 − r1. This allows the virtual site to be located outside the plane of the
three particles.

• LocalCoordinatesSite: The locations of several other particles are used to compute a local coordinate system,
and the virtual site is placed at a fixed location in that coordinate system. The number of particles used to define
the coordinate system is user defined. The origin of the coordinate system and the directions of its x and y axes
are each specified as a weighted sum of the locations of the other particles:

o = wo
1r1 + wo

2r2 + ...

dx = wx
1r1 + wx

2r2 + ...

dy = wy
1r1 + wy

2r2 + ...

dz = dx× dy

These vectors are then used to construct a set of orthonormal coordinate axes as follows:

x̂ = dx/|dx|
ẑ = dz/|dz|
ŷ = ẑ× x̂

Finally, the position of the virtual site is set to

r = o + p1x̂ + p2ŷ + p3ẑ

21.6 Random Numbers with Stochastic Integrators and Forces

OpenMM includes many stochastic integrators and forces that make extensive use of random numbers. It is impossible
to generate truly random numbers on a computer like you would with a dice roll or coin flip in real life—instead
programs rely on pseudo-random number generators (PRNGs) that take some sort of initial “seed” value and steps
through a sequence of seemingly random numbers.

The exact implementation of the PRNGs is not important (in fact, each platform may have its own PRNG whose
performance is optimized for that hardware). What is important, however, is that the PRNG must generate a uniform
distribution of random numbers between 0 and 1. Random numbers drawn from this distribution can be manipulated
to yield random integers in a desired range or even a random number from a different type of probability distribution
function (e.g., a normal distribution).

What this means is that the random numbers used by integrators and forces within OpenMM cannot have any
discernible pattern to them. Patterns can be induced in PRNGs in two principal ways:

1. The PRNG uses a bad algorithm with a short period.

2. Two PRNGs are started using the same seed

All PRNG algorithms in common use are periodic—that is their sequence of random numbers repeats after a given
period, defined by the number of “unique” random numbers in the repeating pattern. As long as this period is longer
than the total number of random numbers your application requires (preferably by orders of magnitude), the first
problem described above is avoided. All PRNGs employed by OpenMM have periods far longer than any current
simulation can cycle through.

Point two is far more common in biomolecular simulation, and can result in very strange artifacts that may be difficult
to detect. For example, with Langevin dynamics, two simulations that use the same sequence of random numbers
appear to synchronize in their global movements.[51][52] It is therefore very important that the stochastic forces and
integrators in OpenMM generate unique sequences of pseudo-random numbers not only within a single simulation,
but between two different simulations of the same system as well (including any restarts of previous simulations).

21.6. Random Numbers with Stochastic Integrators and Forces 137

OpenMM Users Guide, Release 7.3

Every stochastic force and integrator that does (or could) make use of random numbers has two instance methods
attached to it: getRandomNumberSeed() and setRandomNumberSeed(int seed)(). If you set a unique
random seed for two different simulations (or different forces/integrators if applicable), OpenMM guarantees that the
generated sequences of random numbers will be different (by contrast, no guarantee is made that the same seed will
result in identical random number sequences).

Since breaking simulations up into pieces and/or running multiple replicates of a system to obtain more complete
statistics is common practice, a new strategy has been employed for OpenMM versions 6.3 and later with the aim of
trying to ensure that each simulation will be started with a unique random seed. A random seed value of 0 (the default)
will cause a unique random seed to be generated when a new Context is instantiated.

Prior to the introduction of this feature, deserializing a serialized System XML file would result in each stochastic
force or integrator being assigned the same random seed as the original instance that was serialized. If you use a
System XML file generated by a version of OpenMM older than 6.3 to start a new simulation, you should manually
set the random number seed of each stochastic force or integrator to 0 (or another unique value).

138 Chapter 21. Other Features

BIBLIOGRAPHY

[1] James A. Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E. Hauser, and Carlos
Simmerling. Ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. Journal
of Chemical Theory and Computation, 11(8):3696–3713, 2015.

[2] William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein.
Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79:926–935,
1983.

[3] Lee-Ping Wang, Todd J. Martinez, and Vijay S. Pande. Building force fields: an automatic, systematic, and
reproducible approach. Journal of Physical Chemistry Letters, 5:1885–1891, 2014.

[4] Hans W. Horn, William C. Swope, Jed W. Pitera, Jeffry D. Madura, Thomas J. Dick, Greg L. Hura, and Teresa
Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
Journal of Chemical Physics, 120:9665–9678, 2004.

[5] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. Journal of
Physical Chemistry, 91:6269–6271, 1987.

[6] Robert B. Best, Xiao Zhu, Jihyun Shim, Pedro E. M. Lopes, Jeetain Mittal, Michael Feig, and Alexander D.
MacKerell. Optimization of the additive charmm all-atom protein force field targeting improved sampling of
the backbone φ, ψ, and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation,
8(9):3257–3273, 2012.

[7] D.J. Price and C.L. III Brooks. A modified tip3p water potential for simulation with ewald summation. Journal of
Chemical Physics, 121:10096–10103, 2004.

[8] J.L.F. Abascal and C. Vega. A general purpose model for the condensed phases of water: tip4p/2005. Journal of
Chemical Physics, 123:234505, 2005.

[9] Michael W. Mahoney and William L. Jorgensen. A five-site model for liquid water and the reproduction of the
density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics, 112:8910–8922, 2000.

[10] S.W. Rick. A reoptimization of the five-site water potential (tip5p) for use with ewald sums. Journal of Chemical
Physics, 120:6085–6093, 2004.

[11] Pedro E. M. Lopes, Jing Huang, Jihyun Shim, Yun Luo, Hui Li, Benoît Roux, and Alexander D. MacKerell.
Polarizable force field for peptides and proteins based on the classical Drude oscillator. Journal of Chemical
Theory and Computation, 9(12):5430–5449, 2013.

[12] Yue Shi, Zhen Xia, Jiajing Zhang, Robert Best, Chuanjie Wu, Jay W. Ponder, and Pengyu Ren. Polarizable
atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation,
9(9):4046–4063, 2013.

[13] Michael J. Schnieders and Jay W. Ponder. Polarizable atomic multipole solutes in a generalized Kirkwood
continuum. Journal of Chemical Theory and Computation, 3:2083–2097, 2007.

139

OpenMM Users Guide, Release 7.3

[14] P. Ren and Jay W. Ponder. A consistent treatment of inter- and intramolecular polarization in molecular mechanics
calculations. Journal of Computational Chemistry, 23:1497–1506, 2002.

[15] P.A. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot, and A. Pohorille. Computer Simulation of Biomolecular
Systems., pages 83–96. volume 3. Elsevier, 1997.

[16] J. Wang, P. Cieplak, and P.A. Kollman. How well does a restrained electrostatic potential (RESP) model perform
in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry,
21:1049–1074, 2000.

[17] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. Comparison of multiple Amber
force fields and development of improved protein backbone parameters. Proteins, 65:712–725, 2006.

[18] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. Klepeis, R.O. Dror, and D.E. Shaw. Improved side-chain
torsion potentials for the Amber ff99SB protein force field. Proteins, 78:1950–1958, 2010.

[19] D.W. Li and R. Brüschweiler. NMR-based protein potentials. Angewandte Chemie International Edition,
49:6778–6780, 2010.

[20] C. Duan, Y.; Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, and T. Lee.
A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum
mechanical calculations. Journal of Computational Chemistry, 24:1999–2012, 2003.

[21] Alexey Onufriev, Donald Bashford, and David A. Case. Exploring protein native states and large-scale
conformational changes with a modified generalized Born model. Proteins, 55(22):383–394, 2004.

[22] Jay W. Ponder. TINKER - Software Tools for Molecular Design, 4.2. 2004.

[23] Guillaume Lamoureux, Edward Harder, Igor V. Vorobyov, Benoit Roux, and Alexander D. MacKerell Jr. A
polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters,
418(1-3):245–249, 2006.

[24] Gregory D. Hawkins, Christopher J. Cramer, and Donald G. Truhlar. Pairwise solute descreening of solute
charges from a dielectric medium. Chemical Physics Letters, 246(1-2):122–129, 1995.

[25] John Mongan, Carlos Simmerling, J. Andrew McCammon, David A. Case, and Alexey Onufriev. Generalized
Born model with a simple, robust molecular volume correction. Journal of Chemical Theory and Computation,
3(1):156–169, 2007.

[26] Hai Nguyen, Daniel R. Roe, and Carlos Simmerling. Improved generalized Born solvent model parameters for
protein simulations. Journal of Chemical Theory and Computation, 9(4):2020–2034, 2013.

[27] J Srinivasan, M. W. Trevathan, P. Beroza, and D. A. Case. Application of a pairwise generalized Born model to
proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Acc., 101:426–434, 1999.

[28] Andrew C. Simmonett, Frank C. Pickard, Yihan Shao, Thomas E. Cheatham, and Bernard R. Brooks. Efficient
treatment of induced dipoles. Journal of Chemical Physics, 143(7):074115, 2015.

[29] M. Tuckerman, Bruce J. Berne, and Glenn J. Martyna. Reversible multiple time scale molecular dynamics.
Journal of Chemical Physics, 97(3):1990–2001, 1992.

[30] Donald Hamelberg, Cesar Augusto F. de Oliveira, and J. Andrew McCammon. Sampling of slow diffusive
conformational transitions with accelerated molecular dynamics. Journal of Chemical Physics, 127(15):155102,
2007.

[31] I. R. Craig and David E. Manolopoulos. Quantum statistics and classical mechanics: real time correlation
functions from ring polymer molecular dynamics. Journal of Chemical Physics, 121:3368–3373, 2004.

[32] M. Parrinello and A. Rahman. Study of an F center in molten KCl. Journal of Chemical Physics, 80(2):860–867,
1984.

[33] Thomas E. Markland and David E. Manolopoulos. An efficient ring polymer contraction scheme for imaginary
time path integral simulations. Journal of Chemical Physics, 2008.

140 Bibliography

OpenMM Users Guide, Release 7.3

[34] Randall W. Hall and B. J. Berne. Nonergodicity in path integral molecular dynamics. Journal of Chemical
Physics, 1984.

[35] M. Ceriotti, M. Parrinello, Thomas E. Markland, and David E. Manolopoulos. Efficient stochastic thermostatting
of path integral molecular dynamics. Journal of Chemical Physics, 2010.

[36] Guillaume Lamoureux and Benoit Roux. Modeling induced polarization with classical Drude oscillators: theory
and molecular dynamics simulation algorithm. Journal of Chemical Physics, 119(6):3025–3039, 2003.

[37] B. T. Thole. Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics,
59(3):341–350, 1981.

[38] Michael R. Shirts, David L. Mobley, John D. Chodera, and Vijay S. Pande. Accurate and efficient corrections
for missing dispersion interactions in molecular simulations. Journal of Physical Chemistry B, 111:13052–13063,
2007.

[39] Ilario G. Tironi, René Sperb, Paul E. Smith, and Wilfred F. van Gunsteren. A generalized reaction field method
for molecular dynamics simulations. Journal of Chemical Physics, 102(13):5451–5459, 1995.

[40] Abdulnour Y. Toukmaji and John A. Board Jr. Ewald summation techniques in perspective: a survey. Computer
Physics Communications, 95:73–92, 1996.

[41] Ulrich Essmann, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee G. Pedersen. A smooth
particle mesh Ewald method. Journal of Chemical Physics, 103(19):8577–8593, 1995.

[42] Christian L. Wennberg, Teemu Murtola, Szilárd Páll, Mark J. Abraham, Berk Hess, and Erik Lindahl.
Direct-space corrections enable fast and accurate Lorentz–Berthelot combination rule Lennard-Jones lattice
summation. Journal of Chemical Theory and Computation, 11(12):5737–5746, 2015.

[43] Michael Schaefer, Christian Bartels, and Martin Karplus. Solution conformations and thermodynamics of
structured peptides: molecular dynamics simulation with an implicit solvation model. Journal of Molecular
Biology, 284(3):835–848, 1998.

[44] Jay W. Ponder. Personal communication.

[45] R. Everaers and M. R. Ejtehadi. Interaction potentials for soft and hard ellipsoids. Physical Review E, 67:041710,
2003.

[46] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of Chemical
Physics, 72(4):2384–2393, 1980.

[47] Kim-Hung Chow and David M. Ferguson. Isothermal-isobaric molecular dynamics simulations with Monte Carlo
volume sampling. Computer Physics Communications, 91:283–289, 1995.

[48] Johan Åqvist, Petra Wennerström, Martin Nervall, Sinisa Bjelic, and Bjørn O. Brandsdal. Molecular dynamics
simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chemical Physics Letters,
384:288–294, 2004.

[49] Jesús A. Izaguirre, Chris R. Sweet, and Vijay S. Pande. Multiscale dynamics of macromolecules using Normal
Mode Langevin. Pacific Symposium on Biocomputing, 15:240–251, 2010.

[50] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

[51] Blas P. Uberuaga, Marian Anghel, and Arthur F. Voter. Synchronization of trajectories in canonical
molecular-dynamics simulations: observation, explanation, and exploitation. Journal of Chemical Physics,
120(14):6363–6374, 2004.

[52] Daniel J. Sindhikara, Seonah Kim, Arthur F. Voter, and Adrian E. Roitberg. Bad Seeds Sprout Perilous Dynamics:
Stochastic Thermostat Induced Trajectory Synchronization in Biomolecules. Journal of Chemical Theory and
Computation, 5(6):1624–1631, April 2009.

Bibliography 141

	Introduction
	Online Resources
	Referencing OpenMM
	Acknowledgments

	The OpenMM Application Layer: Getting Started
	Introduction
	Installing OpenMM

	Running Simulations
	A First Example
	Using AMBER Files
	Using Gromacs Files
	Using CHARMM Files
	The OpenMM-Setup Application
	Simulation Parameters
	Platforms
	Force Fields
	Amber14
	CHARMM36
	AMOEBA
	CHARMM Polarizable Force Field
	Older Amber Force Fields
	Water Models

	AMBER Implicit Solvent
	Nonbonded Interactions
	Nonbonded Forces for AMOEBA

	Constraints
	Heavy Hydrogens
	Integrators
	Langevin Integrator
	Leapfrog Verlet Integrator
	Brownian Integrator
	Variable Time Step Langevin Integrator
	Variable Time Step Leapfrog Verlet Integrator
	Multiple Time Step Integrator
	aMD Integrator
	Compound Integrator

	Temperature Coupling
	Pressure Coupling
	Energy Minimization
	Removing Center of Mass Motion
	Writing Trajectories
	Recording Other Data
	Saving Simulation Progress and Results

	Model Building and Editing
	Adding Hydrogens
	Adding Solvent
	Adding a Membrane
	Adding or Removing Extra Particles
	Removing Water
	Saving The Results

	Advanced Simulation Examples
	Simulated Annealing
	Applying an External Force to Particles: a Spherical Container
	Extracting and Reporting Forces (and other data)
	Computing Energies

	Creating Force Fields
	Basic Concepts
	Atom Types and Atom Classes
	Residue Templates
	Forces

	Writing the XML File
	<AtomTypes>
	<Residues>
	<Patches>
	Missing residue templates
	<HarmonicBondForce>
	<HarmonicAngleForce>
	<PeriodicTorsionForce>
	<RBTorsionForce>
	<CMAPTorsionForce>
	<NonbondedForce>
	<GBSAOBCForce>
	<CustomBondForce>
	<CustomAngleForce>
	<CustomTorsionForce>
	<CustomNonbondedForce>
	<CustomGBForce>
	<CustomHbondForce>
	<CustomManyParticleForce>
	Writing Custom Expressions
	Tabulated Functions
	Residue Template Parameters
	Including Other Files

	Using Multiple Files
	Extending ForceField
	Adding new force types
	Adding residue template generators

	The OpenMM Library: Introduction
	What Is the OpenMM Library?
	How to get started
	License

	Design Principles
	Choice of Language
	Architectural Overview
	The OpenMM Public API
	The OpenMM Low Level API
	Platforms

	Compiling OpenMM from Source Code
	Prerequisites
	Get a C++ compiler
	Mac and Linux: clang or gcc
	Windows: Visual Studio

	Install CMake
	Get the OpenMM source code
	Other Required Software

	Step 1: Configure with CMake
	Build and source directories
	Starting CMake
	Mac and Linux
	Windows
	All platforms

	Step 2: Generate Build Files with CMake
	Windows
	Mac and Linux

	Step 3: Build OpenMM
	Windows
	Mac and Linux

	Step 4: Install OpenMM
	Windows
	Mac and Linux

	Step 5: Install the Python API
	Windows
	Mac and Linux

	Step 6: Test your build
	Windows
	Mac and Linux

	Building the Documentation (Optional)
	User Guide and Developer Guide
	Python and C++ API Documentation

	OpenMM Tutorials
	Example Files Overview
	Running Example Files
	Visual Studio
	Determining the platform being used
	Visualizing the results

	Mac OS X/Linux
	Determining the platform being used
	Visualizing the results
	Compiling Fortran and C examples

	HelloArgon Program
	Including OpenMM-defined functions
	Running a program on GPU platforms
	Running a simulation using the OpenMM public API
	Error handling for OpenMM
	Writing out PDB files
	HelloArgon output

	HelloSodiumChloride Program
	Simple molecular dynamics system
	Interface routines
	Units
	Lennard-Jones potential
	Opaque handle MyOpenMMData
	myInitializeOpenMM
	myGetOpenMMState
	myStepWithOpenMM
	myTerminateOpenMM

	HelloEthane Program

	Platform-Specific Properties
	OpenCL Platform
	CUDA Platform
	CPU Platform
	Determinism

	Using OpenMM with Software Written in Languages Other than C++
	C API
	Mechanics of using the C API
	Mapping from the C++ API to the C API
	Exceptions
	OpenMM_Vec3 helper type
	Array helper types
	OpenMM_DoubleArray
	OpenMM_StringArray
	OpenMM_Vec3Array
	OpenMM_BondArray
	OpenMM_ParameterArray

	Fortran 95 API
	Mechanics of using the Fortran API
	Mapping from the C++ API to the Fortran API
	OpenMM_Vec3 helper type
	Array helper types
	OpenMM_DoubleArray
	OpenMM_StringArray
	OpenMM_Vec3Array
	OpenMM_BondArray
	OpenMM_ParameterArray

	Python API
	Installing the Python API
	Installing on Windows
	Installing on Linux and Mac

	Mapping from the C++ API to the Python API
	Mechanics of using the Python API
	Units and dimensional analysis
	Why does the Python API include units?
	Quantities, units, and dimensions
	Units examples
	Arithmetic with units
	Atomic scale mass and energy units are “per amount”
	SI prefixes
	Converting to different units
	Lists, tuples, vectors, numpy arrays, and Units

	Examples of OpenMM Integration
	GROMACS
	TINKER-OpenMM

	Testing and Validation of OpenMM
	Description of Tests
	Unit tests
	System tests
	Direct comparisons between OpenMM and other programs

	Test Results
	Comparison to Reference Platform
	Energy Conservation
	Comparison to Gromacs

	AMOEBA Plugin
	OpenMM AMOEBA Supported Forces and Options
	Supported Forces and Options
	Supported Integrators

	TINKER-OpenMM
	Building TINKER-OpenMM (Linux)
	Using TINKER-OpenMM
	Available outputs
	Setting the frequency of output data updates
	Specify the GPU board to use
	Running comparison tests between TINKER and OpenMM routines
	Turning off OpenMM / Reverting to TINKER routines

	OpenMM AMOEBA Validation

	Ring Polymer Molecular Dynamics (RPMD) Plugin
	Drude Plugin
	The Theory Behind OpenMM: Introduction
	Overview
	Units

	Standard Forces
	HarmonicBondForce
	HarmonicAngleForce
	PeriodicTorsionForce
	RBTorsionForce
	CMAPTorsionForce
	NonbondedForce
	Lennard-Jones Interaction
	Coulomb Interaction Without Cutoff
	Coulomb Interaction With Cutoff
	Coulomb Interaction With Ewald Summation
	Coulomb Interaction With Particle Mesh Ewald
	Lennard-Jones Interaction With Particle Mesh Ewald

	GBSAOBCForce
	Generalized Born Term
	Surface Area Term

	GayBerneForce
	AndersenThermostat
	MonteCarloBarostat
	MonteCarloAnisotropicBarostat
	MonteCarloMembraneBarostat
	CMMotionRemover
	RMSDForce

	Custom Forces
	CustomBondForce
	CustomAngleForce
	CustomTorsionForce
	CustomNonbondedForce
	CustomExternalForce
	CustomCompoundBondForce
	CustomCentroidBondForce
	CustomManyParticleForce
	CustomGBForce
	CustomHbondForce
	CustomCVForce
	Writing Custom Expressions
	Setting Parameters
	Parameter Derivatives

	Integrators
	VerletIntegrator
	LangevinIntegator
	BrownianIntegrator
	VariableVerletIntegrator
	VariableLangevinIntegrator
	CustomIntegrator

	Other Features
	Periodic Boundary Conditions
	LocalEnergyMinimizer
	XMLSerializer
	Force Groups
	Virtual Sites
	Random Numbers with Stochastic Integrators and Forces

	Bibliography

